设A,B都是n阶实对称矩阵,且都正定,那么AB是( )A.实对称矩阵 B.正定

练习题库2022-08-02  55

问题 设A,B都是n阶实对称矩阵,且都正定,那么AB是( )A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵

选项 A.实对称矩阵
B.正定矩阵
C.可逆矩阵
D.正交矩阵

答案 C

解析 由于矩阵A与B不一定可交换,故A、B不正确;又A与B不一定是正交矩阵,故AB也非正交矩阵,D项错误;因为|A|>0,|B|>0,故|AB|=|A||B|≠0,从而AB可逆。
转载请注明原文地址:https://tihaiku.com/congyezige/1876917.html

最新回复(0)