(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由

免费题库2022-08-02  38

问题

选项

答案

解析 (Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。由介值定理可得存在ζ∈[2,3],使得f(ζ)=[f(2)+f(3)]/2,于是f(0)=f(η)=f(ζ),η∈(0,2),ζ∈[2,3]。函数f(x)在[0,η],[η,ζ]均满足罗尔定理,所以存在ξ1∈(0,η),ξ2∈(η,ζ),使得f′(ξ1)=f′(ξ2)=0。函数f′(x)在[ξ1,ξ2]满足罗尔定理,故存在ξ∈(ξ1,ξ2)(0,3),使得f″(ξ)=0。
转载请注明原文地址:https://tihaiku.com/xueli/2696971.html

最新回复(0)