首页
登录
学历类
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
免费题库
2022-08-02
70
问题
选项
答案
解析
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。由介值定理可得存在ζ∈[2,3],使得f(ζ)=[f(2)+f(3)]/2,于是f(0)=f(η)=f(ζ),η∈(0,2),ζ∈[2,3]。函数f(x)在[0,η],[η,ζ]均满足罗尔定理,所以存在ξ1∈(0,η),ξ2∈(η,ζ),使得f′(ξ1)=f′(ξ2)=0。函数f′(x)在[ξ1,ξ2]满足罗尔定理,故存在ξ∈(ξ1,ξ2)(0,3),使得f″(ξ)=0。
转载请注明原文地址:https://tihaiku.com/xueli/2696971.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
金本位制下黄金输送点中汇率的波动区间为铸币平价(金平价)加或减输送黄金的成本。(
A.有最大值,有最小值 B.有最大值,没有最小值 C.没有最大值
设(x)在区间[0,2]上具有一阶连续导数,且(0)=(2)=0,。 证明:(
设幂级数的收敛区间为(-2,6),则的收敛区间为( )。A.(-2,6) B
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤
设函数y=f(x)在区间[-1,3]上的图形如图1所示。 说明:说明:11
试求在闭区域及上的最大值与最小值
求函数在约束条件和下的最大值与最小值
随机试题
A、compatiblewithB、responsibleforC、followedbyD、relevanttoAcompatiblewith
A、reducedB、cutC、slowD、lessenedA本题考核的知识点是动词。四个选项都有“减小”的含义,但是有差异。B本身无“减小”的意思,只
Shedidn’tdetectthedelicate(differ)______betweenthetwosentences.differe
Itseemstomethattoday’sprime-timeleaderneedsatop-5listthatclearl
于盾构施工现场设置,以下说法正确的是()。A.采用气压法盾构施工时,施工现
建筑立面图主要用来表达房屋的()造型、门窗位置及形式、外墙面装修、阳台、雨篷等
传输信道频率范围为10~16MHz,采用QPSK调制,支持的最大速率为( )M
A.7B.14C.22D.29
避雷针采用不锈钢钢管制作时,其管壁厚度应不小于()。A、1.5mm B、2mm
假设某蓄电池组,没有负载的情况下测得电压为48.8v,加上负载后,测得端电压为4
最新回复
(
0
)