首页
登录
学历类
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
免费题库
2022-08-02
49
问题
选项
答案
解析
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。由介值定理可得存在ζ∈[2,3],使得f(ζ)=[f(2)+f(3)]/2,于是f(0)=f(η)=f(ζ),η∈(0,2),ζ∈[2,3]。函数f(x)在[0,η],[η,ζ]均满足罗尔定理,所以存在ξ1∈(0,η),ξ2∈(η,ζ),使得f′(ξ1)=f′(ξ2)=0。函数f′(x)在[ξ1,ξ2]满足罗尔定理,故存在ξ∈(ξ1,ξ2)(0,3),使得f″(ξ)=0。
转载请注明原文地址:https://tihaiku.com/xueli/2696971.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
金本位制下黄金输送点中汇率的波动区间为铸币平价(金平价)加或减输送黄金的成本。(
A.有最大值,有最小值 B.有最大值,没有最小值 C.没有最大值
设(x)在区间[0,2]上具有一阶连续导数,且(0)=(2)=0,。 证明:(
设幂级数的收敛区间为(-2,6),则的收敛区间为( )。A.(-2,6) B
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤
设函数y=f(x)在区间[-1,3]上的图形如图1所示。 说明:说明:11
试求在闭区域及上的最大值与最小值
求函数在约束条件和下的最大值与最小值
随机试题
Onceopenonlytotherich,whocould【B1】______thefeesofexpensivecountry
Forthispart,youareallowed30minutestowriteashortessayentitledColleg
有“史前的卢浮宫”之称的岩画洞窟是()。A.拉斯科洞穴 B.阿尔塔米拉洞穴
Thechangeinthatvillagewasmiraculou
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性: A.如
柯克帕特里克四级评估模式从评估的深度和难度角度将培训效果分为( )。A.工作层
项目范围管理的重点是()。A.工作说明书 B.工作分解结构 C.识
一住店客人未付房钱即想离开旅馆去车站。旅馆服务员揪住他不让走,并打报警电话。客人
某35~110kV变电所若35kV出线8回,110kV出线为4回。 若此变电所
四 背景资料 某施工单位承担一矿山立井井筒的施工任务,该立井井筒净直径6.5
最新回复
(
0
)