首页
登录
学历类
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无
考试题库
2022-08-02
42
问题
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
选项
答案
解析
【证明】首先r(B)≤min{m,n)=n,由AB=E得r(AB)=n,而,.(AB)≤r(B),所以r(B)≥n,从而r(B)=n,于是B的列向量组线性无关.
转载请注明原文地址:https://tihaiku.com/xueli/2691959.html
本试题收录于:
数学一研究生题库研究生入学分类
数学一研究生
研究生入学
相关试题推荐
人们对()的早期发现和干预,是证明遗传因素可以控制和改变的最好事例。A.唐氏综
斯伯林用局部报告法证明了()的存在。A.短时记忆 B.长时记忆 C.感觉记
Posnei.用实验证明短时记忆编码过程中最初阶段的编码方式是(),之后逐渐转
设A为3阶矩阵,交换A的第二行和第三行,再将第二列的-1倍加到第一列,得到矩阵
BA选项成立,则两个矩阵的秩相等,不能推出特征值相同,C选项是充分而非必要条件。C成立,可推出A的特征值为1,-1,0,但是A的特征值为1,-1,0时候,Q不一
设A=(α1,α2,α3,α4)为四阶正交矩阵,若矩阵 ,k表示任意常数,
设A为2阶矩阵,P=(a,Aa),其中a是非零向量,且不是A的特征向量。 (Ⅰ
设A为3阶矩阵,a1,a2为A的属于特征值1的线性无关的特征向量,a3为A的属于
设A是4阶矩阵,A*为A的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量
已知a是常数,且矩阵 可经初等列变换化为矩阵 (Ⅰ)求a; (Ⅱ)
随机试题
NinetypercentofAmericansknowthatmostoftheircompatriotsareoverweig
[originaltext]Thankyouallforcomingtomytalkthisevening.It’snice
青少年时期是生长发育的高峰期,因此脂肪的摄入不用限制。( )
治疗伤寒副伤寒流感杆菌性脑膜炎,应首选A、多西环素 B、四环素 C、链霉素
大肠埃希菌H抗原是A.不耐热蛋白质B.耐热蛋白质C.B+CD.A+BE.多糖磷脂
患者,女性,47岁。开胸手术行闭式胸膜腔引流72小时后,护士观察引流瓶内无气、液
进行证券投资分析的方法很多,这些方法大致可以分为()。A:技术分析和财务分析B
2020年4月29日,中共中央政治局委员会召开会议,会议指出,党中央研究确定了支
(2021年真题)根据《标准监理招标文件》,工程监理单位应在收到工程设计文件后编
下列选项中属于资金筹集成本主要特点的是()。A.在资金使用多次发生 B.与资
最新回复
(
0
)