简述研究中学几何问题的三种主要方法。

admin2022-08-02  54

问题 简述研究中学几何问题的三种主要方法。

选项

答案

解析 研究中学几何问题的方法主要数形结合、化归思想、变换思想。 中学几何数学是-门比较抽象的学科,包括的空间和数量的关系,数形结合能够帮助学生将两者相互转化,使抽象的 知识更便于理解学习。在中学几何学习中, 数形结合的思想具有重要的作用,教师在教学中运用数形结合思想, 能够将几何图形用代数的形式表示,并利用代数方式解决几何问题。例如,根据几何性质,建立只限于平面的代数 方程,或是根据代数方程,确定点、线、面三者之间关系。数形结合将几何图形与代数公式密切的联系在一起,利 用代数语言将几何问题简化,使学生更容易解决问题,是几何教学中的核心思想方法。 化归思想是数学中普遍运用的一 种思想,在中学几何教学中, 教师常运用这一 思想,基本的运用方法就是将几 何问题转化为代数问题,利用代数知识将问题解决后,再返回到几何中。或是在对空间曲面进行研究时,将复杂的 空间几何图形转化为学生熟悉的平面曲线, 便于学生理解和解决。例如,在解诀圆柱问题时, 可以通过其对应的 轴截面进行解决,在解诀正棱锥问题时,可以利用化归思想将这一 问题转化为对应特征三角形和特征梯形的问题 进行解决。 变换思想是能够将复杂问题简单化的一种思想方法,变换思想在运用时,一般仅改变数量关系形式和相关元素位置, 为题的结构和性质没有变化。在几何教学中,教师利用变换思想进行变换,实现二次曲线方程的化简,能够通过方 程运算准确的将方程所表示的图形展现出来,在降低学生学习难度的同时,也为用计算机研究几何图形性质等提供 了依据。
转载请注明原文地址:https://tihaiku.com/congyezige/1876370.html

最新回复(0)