首页
登录
职称英语
Part Ⅱ Reading Comprehension (Skimming and Scanning)Directions: In this part, y
Part Ⅱ Reading Comprehension (Skimming and Scanning)Directions: In this part, y
游客
2024-06-01
13
管理
问题
Part Ⅱ Reading Comprehension (Skimming and Scanning)
Directions: In this part, you will have 15 minutes to go over the passage quickly and answer the questions on Answer Sheet 1. For questions 1-7, choose the best answer from the four choices marked [A], [B], [C] and [D]. For questions 8-10, complete the sentences with the information given in the passage.
Hydroelectric Power
Hydroelectric power is America’s leading renewable energy resource. Of all the renewable power sources, it’s the most reliable, efficient and economical. Water is needed to run a hydroelectric generating unit. It’s held in a reservoir or lake behind a dam, and the force of the water being released from the reservoir through the dam spins the blades of a turbine. The turbine is connected to the generator that produces electricity. After passing through the turbine, the water re-enters the river on the downstream side of the dam.
Hydroelectric plants convert the kinetic energy within falling water into electricity. The energy in moving water is produced in the sun, and consequently is continually being renewed. The energy in sunlight evaporates water from the seas and deposits it on land as rain. Land elevation differences result in rainfall runoff, and permit some of the original solar energy to be harnessed as hydroelectric power. Hydroelectric power is at present the earth’s chief renewable electricity source, generating 6% of global energy and about 15% of worldwide electricity. Hydroelectric power in Canada is plentiful and provides 60% of their electrical requirements. Usually regarded as an inexpensive and clean source of electricity, most big hydroelectric projects being planned today are facing a great deal of hostility from environmental groups and local people.
The earliest recorded use of water power was a clock, constructed around 250 BC. Since then, people have used falling water to supply power for grain and saw mills, as well as a host of other uses. The earliest use of flowing water to generate electricity was a waterwheel on the Fox River in Wisconsin in 1882.
The first hydroelectric power plants were much more dependable and efficient than the plants of the day that were fired by fossil fuels. This led to a rise in number of small to medium sized hydroelectric generating plants located wherever there was an adequate supply of falling water and a need for electricity. As demand for electricity soared in the middle years of the 20th century, and the effectiveness of coal and oil power plants improved, small hydro plants became less popular. The majority of new hydroelectric developments were focused on giant mega-projects.
Hydroelectric plants harness energy by passing flowing water through a turbine. The water turbine rotation is delivered to a generator, which generates electricity. The quantity of electricity that can be produced at a hydroelectric plant relies upon two variables. These variables are (1) the vertical distance that the water falls, called the "head", and (2) the flow rate, calculated as volume over time. The amount of electricity that is produced is thus proportional to the head product and the flow rate.
So, hydroelectric power stations can normally be separated into two kinds. The most widespread are "high head" plants and usually employ a dam to stock up water at an increased height. They also store water at times of rain and discharge it during dry times. This results in reliable and consistent electricity generation, capable of meeting demand since flow can be rapidly altered. At times of excess electrical system capacity, usually available at night, these plants can also pump water from one reservoir to another at a greater height. When there is peak electrical demand, the higher reservoir releases water through the turbines to the lower reservoir.
"Low head" hydroelectric plants usually exploit heads of just a few meters or less. These types of power station use a weir or low dam to channel water, or no dam at all and merely use the river flow. Unfortunately their electricity production capacity fluctuates with seasonal water flow in a river.
Around 2003 people believed almost universally that hydroelectric power was an environmentally safe and clean means of generating electricity. Hydroelectric stations do not release any of the usual atmospheric pollutants emitted by power plants fuelled by fossil fuels so they do not add to global warming or acid rain. Nevertheless, recent studies of the larger reservoirs formed behind dams have implied that decomposing flooded vegetation could give off greenhouse gases equal to those from other electricity sources.
The clearest result of hydroelectric dams is the flooding of huge areas of land. The reservoirs built can be exceptionally big and they have often flooded the lands of indigenous peoples and destroyed their way of life. Numerous rare ecosystems are also endangered by hydroelectric power plant development.
Damming rivers may also change the quantity and quality of water in the rivers below the dams, as well as stopping fish migrating upstream to spawn. In addition, silt, usually taken downstream to the lower parts of a river, is caught by a dam and so the river downstream loses the silt that should fertilize the river’s flood plains during high water periods.
Theoretical global hydroelectric power is approximately four times larger than the amount that has been taken advantage of today. Most of the residual hydro potential left in the world can be found in African and Asian developing countries. Exploiting this resource would involve an investment of billions of dollars, since hydroelectric plants normally have very high building costs. Low head hydro capacity facilities on small scales will probably increase in the future as low head turbine research, and the standardization of turbine production, reduce the costs of low head hydroelectric power production. New systems of control and improvements in turbines could lead in the future to more electricity created from present facilities. In addition, in the 1950’s and 60’s when oil and coal prices were very low, lots of smaller hydroelectric plants were closed down. Future increases in the prices of fuel could lead to these places being renovated. [br] How is the flow rate of a hydroelectric power station quantified?
选项
A、The depth of the water.
B、Volume over time.
C、Speed over time.
D、The width of the water.
答案
B
解析
本题考查水流速的计算方式,故将答案出处定位到第五段。根据上题的分析可知,决定发电站的发电量有两个因素,其中一个是the flow rate,并对其进行了解释:calculated as volume over time,明确指出水流速度通过水流量除以时间(volume over time)来计算,其中quantified≈calculated,故B项为答案。
转载请注明原文地址:https://tihaiku.com/zcyy/3615320.html
相关试题推荐
Directions:Forthispart,youareallowed30minutestowriteacompositionon
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,y
Millionsofyoungpeoplearecreatingblogs.Millionsofothersarereading
Millionsofyoungpeoplearecreatingblogs.Millionsofothersarereading
随机试题
[originaltext]Doyouliketoeatquickly?Doyoulikeinexpensivefood?Som
《礼拜六》刊物是属于什么流派的刊物()A.现代派 B.为人生的艺术派 C.
在图所示的情况下,为了防止保温层受潮,隔汽层应设置在何处? A.焦渣和混凝土的
分析项目投资的经济效率,具体可以采用的经济费用效益分析指标包括()。A:经济净
柱式轮廓标安装时其逆反射材料的表面应与道路行车方向平行。()
合伙协议应对合伙企业的( )等事项作出约定。 Ⅰ.记账、会计年度、审计 Ⅱ
创业投资基金投资于种子期、初创期、快速扩张期和()初期的企业。A.成熟 B.
对于非意定信托只承认法定信托,不承认默示信托。()
患者,女,65岁。身体素弱,饮食稍有不慎即呕吐未消化食物,面色白,倦怠乏力,四肢
关于城市生活无着的流浪乞讨人员的救助管理,下列表述不正确的是()A.流浪乞
最新回复
(
0
)