首页
登录
学历类
设4阶矩阵A=(aij)不可逆,元素a12对应的代数余子式A12≠0,a1,a2
设4阶矩阵A=(aij)不可逆,元素a12对应的代数余子式A12≠0,a1,a2
考试题库
2022-08-02
121
问题
设4阶矩阵A=(aij)不可逆,元素a12对应的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则A*x=0的通解为( )A.x=k1a1+k2a2+k3a3,其中k1,k2,k3为任意常数B.x=k1a1+k2a2+k3a4,其中k1,k2,k3为任意常数C.x=k1a1+k2a3+k3a4,其中k1,k2,k3为任意常数D.x=k1a2+k2a3+k3a4,其中k1,k2,k3为任意常数
选项
A.x=k1a1+k2a2+k3a3,其中k1,k2,k3为任意常数
B.x=k1a1+k2a2+k3a4,其中k1,k2,k3为任意常数
C.x=k1a1+k2a3+k3a4,其中k1,k2,k3为任意常数
D.x=k1a2+k2a3+k3a4,其中k1,k2,k3为任意常数
答案
C
解析
由A不可逆知,r(A)<4,又元素a12对应的代数余子式A12≠0,故r(A)≥3,从而r(A)=3。由
,可知r(A*)=1。故A*x=0的基础解系含有3个解向量。因a1,a2,a3,a4为矩阵A的列向量组,则a1,a3,a4可看做作A12对应矩阵列向量组的延长组,故a1,a3,a4线性无关。又A*A=A*(a1,a2,a3,a4)=|A|E=0,故a1,a3,a4均为A*x=0的解。综上,a1,a3,a4为A*x=0的一个基础解系,故A*x=0得通解为x=k1a1+k2a3+k3a4,其中k1,k2,k3为任意常数。
转载请注明原文地址:https://tihaiku.com/xueli/2697104.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
马克维茨模型中方差矩阵中一共有N^2个方和协方差项,其中协方差有()项A.N^2
下列哪个心理学派别反对把意识分解为元素,并且重视心理学实验,在知觉、学习、思维等
BA选项成立,则两个矩阵的秩相等,不能推出特征值相同,C选项是充分而非必要条件。C成立,可推出A的特征值为1,-1,0,但是A的特征值为1,-1,0时候,Q不一
已知矩阵 ,若下三角可逆矩阵P和上三角可逆矩阵Q可使得PAQ为对角矩阵,则P,
设矩阵仅有两个不同的特征值,若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使
设A为2阶矩阵,P=(a,Aa),其中a是非零向量,且不是A的特征向量。 (Ⅰ
设4阶矩阵A=(aij)不可逆,元素a12对应的代数余子式A12≠0,a1,a2
设A是4阶矩阵,A*为A的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量
已知a是常数,且矩阵 可经初等列变换化为矩阵 (Ⅰ)求a; (Ⅱ)
设 E为三阶单位矩阵。 (Ⅰ)求方程组AX=0的一个基础解系; (Ⅱ)
随机试题
Asamatteroffact,whenallalanguagetakesfromanotheroneismerewords
AboutfortypercentofallemailtrafficintheUnitedStatesisspam,andt
Whichofthefollowingisthemostappropriatetitleforthispassage?[br]Thro
[originaltext]W:David,there’snotmuchleftintherefrigerator.Imightbea
期权按照标的物不同,可以分为金融期权与商品期权,下列属于金融期权的有()。A、利率期货B、股票指数期权C、外汇期权D、能源期权B,C金融期权的
在下图所示的双代号时标网络计划中,所提供的正确信息有()。 A.计算
石膏固定后,最应注意的是A.石膏松脱 B.石膏变形 C.骨折再移位 D.压
对包合物的叙述不正确的是A.大分子包含小分子物质形成的非键合化合物称为包合物
项目可行性研究内容中的()主要是从资源配置的角度衡量项目的价值,评价项目在实
患者,男性,45岁。尿潴留,遵医嘱行留置导尿术。留置导尿期间,为防止逆行感染,下
最新回复
(
0
)