首页
登录
学历类
已知,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1 B.t-6
已知,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1 B.t-6
资格题库
2022-08-02
43
问题
已知
,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1B.t-6时P的秩必为2C.t≠6时P的秩必为1D.t≠6时P的秩必为2
选项
A.t=6时P的秩必为1
B.t-6时P的秩必为2
C.t≠6时P的秩必为1
D.t≠6时P的秩必为2
答案
C
解析
因为P≠O,所以秩r(P)≥1,问题是r(P)究竟为1还是2?A是m×n矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n.当t=6时,r(Q)=1.于是从r(P)+r(Q)≤3得 r(P)≤2.因此(A)、(B)中对秩r(P)的判定都有可能成立,但不是必成立.所以(A)、(B)均不正确.当t≠6时,r(Q)=2.于是从r(P)+r(Q)≤3得r(P)≤1.故应选(C).
转载请注明原文地址:https://tihaiku.com/xueli/2695542.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
简述冯忠良的心智技能三阶段论
设A为3阶矩阵,交换A的第二行和第三行,再将第二列的-1倍加到第一列,得到矩阵
BA选项成立,则两个矩阵的秩相等,不能推出特征值相同,C选项是充分而非必要条件。C成立,可推出A的特征值为1,-1,0,但是A的特征值为1,-1,0时候,Q不一
已知矩阵 ,若下三角可逆矩阵P和上三角可逆矩阵Q可使得PAQ为对角矩阵,则P,
设A为2阶矩阵,P=(a,Aa),其中a是非零向量,且不是A的特征向量。 (Ⅰ
已知矩阵 若线性方程组Ax=b有无穷多解,则a=
设A是4阶矩阵,A*为A的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量
已知a是常数,且矩阵 可经初等列变换化为矩阵 (Ⅰ)求a; (Ⅱ)
设 E为三阶单位矩阵。 (Ⅰ)求方程组AX=0的一个基础解系; (Ⅱ)
设 当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C。
随机试题
AT&Tplanstospend18billiondollarsin2010【D1】______itswirelessnetwor
Manyastudent______goingtotakepartinCET-6nextmonth.A、isB、istoC、are
Ifartseekstodivorceitselffrommeaningfulandassociativeimages,ifit
管道末端采用防晃支架固定,支架与末端喷嘴间的距离不大于()mm。A.100
青藏高原的农田、村镇、城市主要分布在( )A.藏北高原和昆仑山南麓 B.“三
以下报纸以出版时间命名的是()A.《经济观察报》 B.《今日早报》 C.《
宾馆建筑内设客房、洗衣机房、游泳池及健身娱乐设施,采用一套全日制集中热水供应系统
患者,男性,25岁,不洁性接触后3天,尿道口发痒、红肿、疼痛,并有脓性分泌物。最
现行规范规定,采用三角测量的方法进行房产平面控制测量时,在困难情况下,三角内角最
A.哺乳动物长期致癌试验 B.流行病学调查 C.哺乳动物短期致癌试验 D.
最新回复
(
0
)