首页
登录
职称英语
This section measures your ability to understand academic passages in English.T
This section measures your ability to understand academic passages in English.T
游客
2024-01-03
33
管理
问题
This section measures your ability to understand academic passages in English.
There are three passages in the section. Give yourself 20 minutes to read each passage and answer the questions about it. The entire section will take 60 minutes to complete.
You may look back at a passage when answering the questions. You can skip questions and go back to them later as long as there is time remaining.
Directions: Read the passage. Then answer the questions. Give yourself 20 minutes to complete this practice set.
POWERING THE INDUSTRIAL REVOLUTION
In Britain one of the most dramatic changes of the Industrial Revolution was the harnessing of power. Until the reign of George III(1760-1820), available sources of power for work and travel had not increased since the Middle Ages. There were three sources of power: animal or human muscles; the wind, operating on sail or windmill; and running water.
Only the last of these was suited at all to the continuous operating of machines, and although waterpower abounded in Lancashire and Scotland and ran grain mills as well as textile mills, it had one great disadvantage: streams flowed where nature intended them to, and water-driven factories had to be located on their banks, whether or not the location was desirable for other reasons.
Furthermore, even the most reliable waterpower varied with the seasons and disappeared in a drought. The new age of machinery, in short, could not have been born without a new source of both movable and constant power.
The source had long been known but not
exploited
. Early in the century, a pump had come into use in which expanding steam raised a piston in a cylinder, and atmospheric pressure brought it down again when the steam condensed inside the cylinder to form a vacuum. This "
atmospheric engine
," invented by Thomas Savery and
vastly
improved by his partner, Thomas Newcomen, embodied revolutionary principles, but it was so slow and wasteful of fuel that it could not be employed outside the coal mines for which it had been designed. In the 1760s, James Watt perfected a separate condenser for the steam, so that the cylinder did not have to be cooled at every stroke; then he devised a way to make the piston turn a wheel and thus convert reciprocating(back and forth)motion into rotary motion. He thereby transformed an inefficient pump of limited use into a steam engine of a thousand uses. The final step came when steam was introduced into the cylinder to drive the piston backward as well as forward, thereby increasing the speed of the engine and cutting its fuel consumption.
Watt’s steam engine soon showed what it could do. It liberated industry from dependence on running water. The engine eliminated water in the mines by driving efficient pumps, which made possible deeper and deeper mining. The ready availability of coal inspired William Murdoch during the 1790s to develop the first new form of nighttime illumination to be discovered in a millennium and a half. Coal gas rivaled smoky oil lamps and flickering candles, and early in the new century, well-to-do Londoners grew accustomed to gaslit houses and even streets. Iron manufacturers, which had starved for fuel while depending on charcoal, also benefited from ever-increasing supplies of coal; blast furnaces with steam-powered bellows turned out more iron and steel for the new machinery. Steam became the motive force of the Industrial Revolution, as coal and iron ore were the raw materials.
By 1800 more than a thousand steam engines were in use in the British Isles, and Britain retained a virtual monopoly on steam engine production until the 1830s. Steam power did not merely spin cotton and roll iron; early in the new century, it also multiplied ten times over the amount of paper that a single worker could produce in a day. At the same time, operators of the first printing presses run by steam rather than by hand found it possible to produce a thousand pages in an hour rather than thirty. Steam also promised to eliminate a transportation problem not fully solved by either canal boats or turnpikes. Boats could carry heavy weights, but canals could not cross hilly terrain; turnpikes could cross the hills, but the roadbeds could not stand up under great weights. These problems needed still another solution, and the ingredients for it lay close at hand. In some industrial regions, heavily laden wagons, with flanged wheels, were being hauled by horses along metal rails; and the stationary steam engine was puffing in the factory and mine. Another generation passed before inventors succeeded in combining these ingredients, by putting the engine on wheels and the wheels on the rails, so as to provide a machine to take the place of the horse. Thus the railroad age sprang from what had already happened in the eighteenth century.
Directions: Now answer the questions.
In Britain one of the most dramatic changes of the Industrial Revolution was the harnessing of power. Until the reign of George III(1760-1820), available sources of power for work and travel had not increased since the Middle Ages. There were three sources of power: animal or human muscles; the wind, operating on sail or windmill; and running water. Only the last of these was suited at all to the continuous operating of machines, and although waterpower abounded in Lancashire and Scotland and ran grain mills as well as textile mills, it had one great disadvantage: streams flowed where nature intended them to, and water-driven factories had to be located on their banks, whether or not the location was desirable for other reasons. Furthermore, even the most reliable waterpower varied with the seasons and disappeared in a drought. The new age of machinery, in short, could not have been born without a new source of both movable and constant power.
The source had long been known but not exploited. Early in the century, a pump had come into use in which expanding steam raised a piston in a cylinder, and atmospheric pressure brought it down again when the steam condensed inside the cylinder to form a vacuum. This "atmospheric engine," invented by Thomas Savery and vastly improved by his partner, Thomas Newcomen, embodied revolutionary principles, but it was so slow and wasteful of fuel that it could not be employed outside the coal mines for which it had been designed. In the 1760s, James Watt perfected a separate condenser for the steam, so that the cylinder did not have to be cooled at every stroke; then he devised a way to make the piston turn a wheel and thus convert reciprocating(back and forth)motion into rotary motion. He thereby transformed an inefficient pump of limited use into a steam engine of a thousand uses. The final step came when steam was introduced into the cylinder to drive the piston backward as well as forward, thereby increasing the speed of the engine and cutting its fuel consumption. [br] According to paragraph 2, Watt’s steam engine differed from earlier steam engines in each of the following ways EXCEPT:
选项
A、It used steam to move a piston in a cylinder.
B、It worked with greater speed.
C、It was more efficient in its use of fuel.
D、It could be used in many different ways.
答案
A
解析
转载请注明原文地址:https://tihaiku.com/zcyy/3329981.html
相关试题推荐
Choosethecorrectletter,A,BorC.[br]Thestudenthastheabilityof[orig
Choosethecorrectletter,A,BorC.[br]Understandinghowpeoplethinkabout
______ofpotteryisdependentonthedurabilityofclayafterfiring.A、Tomake
[audioFiles]audio_etoefz_031(20051)[/audioFiles]A、Sheunderstandswhythemans
Occam’sRazorDevelopedbyEnglishacademicWilliamo
TheWritingsectiontestsyourabilitytowriteessaysinEnglishsimilarto
TheWritingsectiontestsyourabilitytowriteessaysinEnglishsimilarto
ANNOUNCEMENTFROMTHEDEAN:NEWCREDITREQUIREMENTSTheacademicdean
TheWritingsectiontestsyourabilitytowriteessaysinEnglishsimilarto
TheWritingsectiontestsyourabilitytowriteessaysinEnglishsimilarto
随机试题
Manyadvertisersremain______oftheInternetandquestionhowheavilytorelyon
PeopleintheUScannowcarryanartificialintelligence(AT)aroundinthe
成孔设备就位后,必须平正、稳固,确保施工中不发生倾斜、移动。()
A.四缝 B.定喘 C.太阳 D.二白 E.八邪治疗痔疮常用的经外奇穴是
以下不属于药品特殊性的是A.经济性 B.质量的重要性 C.专属性 D.限时
汇率因素对房地产价格影响的表现是:本币汇率______,会导致房地产价格____
达到公开招标数额标准的货物、工程和服务,()采用公开招标方式进行采购。A、必须
调节远曲小管、集合管对Na+重吸收的主要因素是A.血管升压素 B.醛固酮 C
投标人在确定综合单价时需要注意的事项有()。A.清单项目特征描述 B.清单
不合格单元工程必须经返工或补工合格并取得()认证后,方准予进入下道工序或后序单
最新回复
(
0
)