首页
登录
职称英语
"Life in Our Solar System" Although we can imagine life based on something ot
"Life in Our Solar System" Although we can imagine life based on something ot
游客
2024-01-03
45
管理
问题
"Life in Our Solar System"
Although we can imagine life based on something other than carbon chemistry, we know of no examples to tell us how such life might arise and survive. We must limit our discussion to life as we know it and the conditions it requires. The most important requirement is the presence of liquid water, not only as part of the chemical reactions of life, but also as a medium to transport nutrients and wastes within the organism.
The water requirement automatically eliminates many worlds in our solar system. The moon is airless, and although some data suggest ice frozen in the soil at its poles, it has never had liquid water on its surface. In the vacuum of the lunar surface, liquid water would boil away rapidly. Mercury too is airless and cannot have had liquid water on its surface for long periods of time. Venus has some traces of water vapor in its atmosphere, but it is much too hot for liquid water to survive. If there were any lakes or oceans of water on its surface when it was young, they must have evaporated quickly. Even if life began there, no traces would be left now.
The inner solar system seems too hot, and the outer solar system seems too cold. The Jovian planets have deep atmospheres, and at a certain level, they have moderate temperatures where water might condense into liquid droplets. But it seems unlikely that life could begin there. The Jovian planets have no surfaces where oceans could nurture the beginning of life, and currents in the atmosphere seem destined to circulate gas and water droplets from regions of moderate temperature to other levels that are much too hot or too cold for life to survive.
A few of the satellites of the Jovian planets might have suitable conditions for life. Jupiter’s moon Europa seems to have a liquid-water ocean below its icy crust, and minerals dissolved in that water would provide a rich broth of possibilities for chemical evolution. A Nevertheless, Europa is not a promising site to search for life because conditions may not have remained stable for the billions of years needed for life to evolve beyond the microscopic stage. B If Jupiter’s moons interact gravitationally and modify their orbits, Europa may have been frozen solid at some points in history. C
Saturn’s moon Titan has an atmosphere of nitrogen, argon, and methane and may have oceans of liquid methane and ethane on its surface. D The chemistry of life that might crawl or swim on such a world is unknown, but life there may be unlikely because of the temperature. The surface of Titan is a deadly -179°C (-290°F). Chemical reactions occur slowly or not at all at such low temperatures, so the chemical evolution needed to begin life may never have occurred on Titan.
Mars is the most likely place for life in our solar system. The evidence, however, is not encouraging. Meteorite ALH84001 was found on the Antarctic ice in 1984. It was probably part of debris ejected into space by a large impact on Mars. ALH84001 is important because a team of scientists studied it and announced in 1996 that it contained chemical and physical traces of ancient life on Mars.
Scientists were excited too, but being professionally skeptical, they began testing the results immediately. In many cases, the results did not confirm the conclusion that life once existed on Mars. Some chemical contamination from water on Earth has occurred, and some chemicals in the meteorite may have originated without the presence of life. The physical features that look like fossil bacteria may be mineral formations in the rock.
Spacecraft now visiting Mars may help us understand the past history of water there and paint a more detailed picture of present conditions. Nevertheless, conclusive evidence may have to wait until a geologist in a space suit can wander the dry streambeds of Mars cracking open rocks and searching for fossils.
We are left to conclude that, so far as we know, our solar system is bare of life except for Earth. Consequently, our search for life in the universe takes us to other planetary systems. [br] Which of the following statements about the water on Venus is true?
选项
A、The water evaporated because of the high temperatures.
B、The water became frozen in the polar regions.
C、Only a little water is left in small lakes on the surface.
D、Rain does not fall because there is no atmosphere.
答案
A
解析
"Venus has some traces of water vapor in its atmosphere, but it is much too hot for liquid water to survive." Choice B is not correct because the water transformed to vapor, not ice. Ice refers to our moon, not to Venus. Choice C is not correct because the lakes or oceans evaporated quickly. Choice D is not correct because the airless atmosphere refers to Mercury, not to Venus.
转载请注明原文地址:https://tihaiku.com/zcyy/3329294.html
相关试题推荐
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
GENERALSYSTEMSTHEORY1TheGreekword"systema"meansunion,
[originaltext]M:Isthatamap?Areyougoingsailingorsomething?W:Iwish.
[originaltext]M:Isthatamap?Areyougoingsailingorsomething?W:Iwish.
TheUniversityisplanningtocarryoutanewhousingfeesystem.Readthenotic
随机试题
Theeffectofthebabyboomontheschoolshelpedtomakepossibleashifti
SummaryListentothepassage.Forquestions26—30,completethenotesusingno
下列关于应用生产能力指数法估算建设项目投资的说法中,正确的有()。A.生产能
癫证与郁病的主要区别在于:A.有无神情抑郁 B.有无沉默寡言 C.有无喃喃自
正常成年人血液中血小板的正常范围是A.(10~50)×10/LB.(50~100
患者女,30岁。因“无明显诱因出现乏力伴胸闷、气急,活动后症状加重3周”就诊,实
(2016年11月)()是根据某项工作的技术复杂程度及劳动繁重程度而划分的等级
下列关于影响贷款价格的因素的说法,错误的是()。 A.借款人的信用越好,贷款
学习者把自己的成功或失败归因予运气或任务难度;这种归因是从()维度归因的。
患者,女性,46岁,1年来口腔黏膜反复起疱、破溃,此起彼伏,伴有疼痛。检查发现:
最新回复
(
0
)