COGNITIVE MAPS IN ANIMALS (1) A

游客2024-01-02  13

问题                                             COGNITIVE MAPS IN ANIMALS
    (1) A central hypothesis of animal cognition is that many animals make use of cognitive maps—internal representations or codes—of the spatial relationships among objects in their surroundings. In a broad sense, most animals that migrate probably have some internal map of the way external objects are arranged.
    (2) The most extensive studies of cognitive maps have been made for animals that exhibit seasonal migration, the regular back-and-forth movement of animals between two geographic areas at particular times of the year. [A] Seasonal migration enables many species to access rich food resources throughout the year and to breed or winter in areas that favor survival. [B] One long-distance traveler is the gray whale. [0] During summer, these giant aquatic mammals feast on small, bottom-dwelling invertebrates that abound in northern oceans. [D] In the fall, they leave their northern feeding grounds and begin a long trip south along the North American coastline. Arriving in warm, shallow lagoons off Baja California (Mexico) in the winter months, they breed, and pregnant females give birth to young before migrating back north. The yearly round-trip, some 20,000 kilometers, is the longest for any mammal.
    (3) Among insects, the monarch butterfly has one of the most remarkable seasonal migrations. During winter, these insects decorate certain trees at the western tip of Cuba, in a few mountain valleys of central Mexico, and at a few sites along the California coast. All monarchs alive at the end of summer fly south to reach their wintering sites. With the onset of spring, monarchs mate at the wintering sites and begin migrating northward. As they arrive at summer destinations, they lay eggs and then die. Two or more generations are produced during the summer, repopulating the United States and southern Canada. With the approach of fall, the summer’s last generation of monarchs flies south to the wintering grounds. They migrate as far as 4,000 kilometers and end up at a specific site, although they have not flown the route before.
    (4) Researchers have found that migrating animals stay on course by using a variety of environmental cues. Gray whales, for instance, seem to use coastal landmarks to pilot their way north and south. Migrating south in the fall, they orient themselves with the North American coastline on their left. Migrating north in the spring, they keep the coast on their right. Whale watchers sometimes see gray whales stick their heads straight up out of the water, perhaps to obtain a visual fix on land. Many birds migrate at night, navigating by the stars the way ancient human soldiers did. In contrast, monarch butterflies migrate during the day, resting in trees and bushes at night; genetic programming may enable them to use the Sun as a compass.
    (5) Navigating by the Sun or by stars requires an ability to keep track of compass direction. Many migrators also must have an internal timing mechanism that compensates for the continuous daily movement of Earth relative to celestial objects. The timing mechanism must also allow for the apparent change in position of celestial objects as the animal moves over its migration route. Almost nothing is known yet about the nature of these timing mechanisms. At least one night-migrating bird, the indigo bunting, seems to avoid the need for a timing mechanism by fixing on the North Star, the one bright star in northern skies that appears almost stationary. Researchers have found that buntings learn a star map and fix on a stationary star when navigating at night.
     (6) Another interesting, and more or less open, question about migration is how birds continue navigating when the Sun or stars are obscured by clouds. There is strong evidence that some birds can orient themselves to Earth’s magnetic field. Magnetite, the iron-containing mineral once used by sailors as a crude compass, is probably involved in sensing the field. The mineral has been found in the heads of pigeons, in the abdomens of bees, and in certain bacteria that orient themselves to a magnetic field. Future research may show that magnetic sensing is a widespread, important part of a complex navigation mechanism in many animals. [br] Which of the following facts demonstrates that migrating birds need a "timing mechanism"?

选项 A、Sometimes a migrating bird’s internal compass does not function correctly.
B、The Sun is visible to migrating birds in the east in the morning, but in the west in the evening.
C、Most birds migrate either during the day or during the night, but not both.
D、Some stars, for example the North Star, do not appear to change position during a single night or even during the course of a long migration.

答案 B

解析 本题询问哪项可表明迁徙的鸟类需要定时机制,属于事实信息题。第5段第2、3句提到,许多具有迁徙行为的动物还必须具有内部定时机制,来抵消每日地球与天体之间持续的相对运动。当动物在其迁徙路线上移动时,定时机制还必须能够考虑到天体位置的明显变化。B项所说的太阳在早晚间的位置变化正说明通过太阳和星辰来导航的鸟类在迁徙过程中不能光靠太阳和星辰来定位,还需要借助定时机制,故B项正确。分析原文第5段可知,A项“有时,迁徙中的鸟类的内在指南针无法正常地工作”和C项“大多数鸟类的迁徙时间不是白天就是晚上,没有鸟类可兼顾两个时段”在原文找不到依据。从第5段靛蓝彩巫鸟的例子可知,这种鸟通过北极星不改变方位这个特征来定位,以免触发对定时机制的需求,这是鸟类不需要定时机制的例子,D项与题意相悖。
转载请注明原文地址:https://tihaiku.com/zcyy/3327418.html
最新回复(0)