首页
登录
职称英语
Early in the film "A Beautiful Mind," the mathematician John Nash is seen
Early in the film "A Beautiful Mind," the mathematician John Nash is seen
游客
2023-11-19
55
管理
问题
Early in the film "A Beautiful Mind," the mathematician John Nash is seen sitting in a Princeton court- yard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go(围棋), an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called "Deep Blue" not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while tithe complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. Today, no computer has been able to achieve a skill level beyond that of the casual player.
The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’ s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of proroguing a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic think- Lug, knowledge representation, pattern recognition and perhaps most intriguingly, intuition.
Along with intuition, pattern recognition is a large part of the game. While computers are good at process- ing numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess game and see if there’s some major issue," he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
One measure of the challenge the game poses is the performance of Go computer programs. The past five years have yielded incremental improvements but no breakthroughs, said David Fotland, a programmer and chip designer in San Jose, California, who created and sells The Many Faces of Go, one of the few commercial Go programs.
Part of the challenge has to do with processing speed. The typical chess program can evaluate about 500,000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By mitigate, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kiem if, who wrote a program called, Smart Go.
In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30,000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluafing positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourages programmers to advance basic work in artificial intelligence.
Reiss, an expert in neural networks, compared a human being’s ability to recognize a strong or weak position in Go with the ability to distinguish between an image of a chair and one of a bicycle. Both tasks, he said are hugely difficult for a computer. For that reason, Fotland said, "writing a strong Go program will teach us more about making computers think like people than writing a strong chess program." [br] The word "snap" in Para. 2 means______.
选项
A、a photo
B、a sudden sharp cracking sound
C、a sudden attempt to grasp
D、an easy job
答案
D
解析
词义理解题。原文第二段比较了围棋和其他棋类的不同。围棋令电脑专家感到挫折,而其他棋类则相对来说容易的多。
转载请注明原文地址:https://tihaiku.com/zcyy/3199436.html
相关试题推荐
Hewas______toohappytoinvitethebeautifulgirltodinner.A、onlyB、soC、muc
Iwish______toMalaysiawhenI,naps-inSingapore:Ihearit’sabeautifullan
—Howbeautifulyourbrother’spaintingis!—It’s______mine.A、notgoodmorethan
Thesurroundingshoreswerebeautiful,almostuniformlyclothedby______forest
Earlyinthefilm"ABeautifulMind,"themathematicianJohnNashisseen
Earlyinthefilm"ABeautifulMind,"themathematicianJohnNashisseen
Earlyinthefilm"ABeautifulMind,"themathematicianJohnNashisseen
Thesurroundingshoreswerebeautiful,almostuniformlyclothedby______forest
Individuallinesofthepoemwereverybeautiful,butIdidn’tseehowthelines
Notforamoment______byherbeautifulwords.A、hehasbeendeceivedB、washed
随机试题
[originaltext]About70millionAmericansaretryingtoloseweight.Thatis
著作权由作者享有的,法人或者其他组织无权使用()
某公司发展非常迅速,股利在今后3年预期将以每年25%的速率增长,其后增长率下降到
习近平总书记强调,要通过加快构建生态文明体系,确保到()年,生态环境质量实现根
题图中给出了某正弦电压的波形图,由图可知,该正弦量的: A.有效值为10V
TBM到达掘进的最后()要根据围岩的地质情况确定合理的掘进参数并做出书面交底。A
资料:Goodlisteningismuchmorethanbein
代理的法律特征包括()。A.代理行为是指能够引起民事法律后果的民事法律行为
A.稽留热 B.间歇热 C.弛张热 D.回归热 E.波状热霍奇金淋巴瘤的
脑梗死进一步检查
最新回复
(
0
)