首页
登录
职称英语
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen
游客
2023-10-26
43
管理
问题
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go(围棋), an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
(2) In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. Today, no computer has been able to achieve a skill level beyond that of the casual player.
(3) The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguingly, intuition.
(4) Along with intuition, pattern recognition is a large part of the game. While computers are good at processing numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
(5) Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
(6) "You can very quickly look at a chess game and see if there’s some major issue," he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
(7) One measure of the challenge the game poses is the performance of Go computer programs. The past five years have yielded incremental improvements but no breakthroughs, said David Fotland, a programmer and chip designer in San Jose, California, who created and sells The Many Faces of Go, one of the few commercial Go programs.
(8) Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300,000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By midgame, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kierulf, who wrote a program called SmartGo.
(9) In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30,000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly: they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourages programmers to advance basic work in artificial intelligence.
(10) Reiss, an expert in neural networks, compared a human being’s ability to recognize a strong or weak position in Go with the ability to distinguish between an image of a chair and one of a bicycle. Both tasks, he said are hugely difficult for a computer.
(11) For that reason, Fotland said, "Writing a strong Go program will teach us more about making computers think like people than writing a strong chess program." [br] The main idea of this passage is that_____.
选项
A、Go is a more complex game than chess
B、Go reflects the way human beings think
C、Go players are likely to feel frustrated
D、Go poses a challenge to artificial intelligence
答案
D
解析
此题考查文章主题,从第二段的第一句可以找到线索。
转载请注明原文地址:https://tihaiku.com/zcyy/3132663.html
相关试题推荐
(1)TheFieldsMedalisthehighestscientificawardformathematicians.Inf
(1)Therewasawomanwhowasbeautiful,whostartedwithalltheadvantages,
(1)Therewasawomanwhowasbeautiful,whostartedwithalltheadvantages,
“Lookatthosebeautifulladies’gowns”is______,becauseitisnotclearwhether
"Howbeautifulitis",she______atthebeautifulviewwhenshereachedthetop
Thisisalong______—roughly20milesdownabeautifulvalleytothelittlevil
Thehouseitselfisbeautiful,butthe______ratherunpleasant.A、surroundingis
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
随机试题
PASSAGETHREE[br]WhatwasDoris’reactionwhenthedoctorlookedupandshook
以()为代表的期货投资基金的监管模式,是通过一些间接的法规来制约基金业的活动,并没有全国性管理机构,主要依靠证券交易所、基金业协会等进行自我监管。A、
但在汽车市场高速发展的同时也产生了负面的影响。However,therapidgrowthoftheautomarketalsoproduce
桥梁承载能力评定时,活载的轴荷分布影响系数是根据轴重超过()所占百分比确定。A
气体扩散速率与()A.扩散面积成反比 B.气体溶解度成反比 C.气体分子
初产妇,26岁,40周妊娠,因规律宫缩6小时入院。胎心监护提示胎心基线160次/
篮球运动中,可打乱对方的整体防守部署,压缩防区,给同伴创造最佳的外围投篮或篮下快
医学伦理学的研究对象是A.医学道德现象和医学道德关系 B.职业道德 C.生物
①人类世界所创造出来的奇异图案浮露在鼎身上,各种图腾以一定的秩序排列着,构成一个
工程质量不符合要求,通过返修和加固仍不能满足安全使用要求的应( )A.协商验收
最新回复
(
0
)