If you go down to the woods today, you may meet high-tech trees—genetically

游客2023-08-14  21

问题     If you go down to the woods today, you may meet high-tech trees—genetically modified to speed their growth or improve the quality of their wood. Genetically-engineered food crops have become increasingly common, albeit controversial, over the past ten years. But genetic engineering of trees has lagged behind.
    Part of the reason is technical. Understanding, and then altering, the genes of a big pine tree are more complex than creating a better tomato. While tomatoes sprout happily, and rapidly, in the laboratory, growing a whole tree from a single, genetically altered cell in a test tube is a tricky process that takes years, not months. Moreover, little is known about tree genes. Some trees, such as pine trees, have a lot of DNA—roughly ten times as much as human. And, whereas the Human Genome Project is more than half-way through its task of isolating and sequencing the estimated 100, 000 genes in human cells, similar efforts to analyze tree genes are still just saplings (幼苗).
    Given the large number of tree genes and the little that is known about them, tree engineers are starting with a search for genetic "markers". The first step is to isolate DNA from trees with desirable properties such as insect resistance. The next step is to find stretches of DNA that show the presence of a particular gene.
    Then, when you mate two trees with different desirable properties, it is simple to check which offspring contain them all by looking for the genetic markers. Henry Amerson, at North Carolina State University, is using genetic markers to breed fungal resistance into southern pines. Billions of these are grown across America for pulp and paper, and outbreaks of disease are expensive. But not all individual trees are susceptible. Dr. Amerson’s group has found markers that distinguish fungus-resistant stock from disease-prone trees. Using traditional breeding techniques, they are introducing the resistance genes into pines on test sites in America.
    Using genetic markers speeds up old-fashioned breeding methods because you no longer have to wait for the tree to grow up to see if it has the desired traits. But it is more a sophisticated form of selective breeding. Now, however, interest in genetic tinkering (基因修补) is also gaining ground. To this end, Dr. Amerson and his colleagues are taking part in the Pine Gene Discovery Project, an initiative to identify and sequence the 50,000-odd genes in the pine tree’s genome Knowing which gene does what should make it easier to know what to alter. [br] It is discovered by Henry Amerson’s team that ______.

选项 A、southern pines cannot resist fungus
B、all southern pines are not susceptible
C、the genetic marker in southern pines was the easiest to identify
D、fungus-resistant genes came originally from outside the U.S.A.

答案 B

解析 选项B是一个半否定的句式,因此本题关键在于理解选项B的All…are not…结构在意义上等同于第3段倒数第3句的not all…are…。第3段倒数第2句中的fungus-resistant stock指的是南方松树中能抗真菌的树种,并非别的与南方松树毫不相关的树种,因此A的说法不正确。
转载请注明原文地址:https://tihaiku.com/zcyy/2924143.html
最新回复(0)