首页
登录
公务员类
中世纪数学家比萨的莱奥纳多发现了斐波那契数列,它是这样一组数列:1、1、2、3、
中世纪数学家比萨的莱奥纳多发现了斐波那契数列,它是这样一组数列:1、1、2、3、
练习题库
2022-08-02
33
问题
中世纪数学家比萨的莱奥纳多发现了斐波那契数列,它是这样一组数列:1、1、2、3、5······即后一数字为前面两个数字之和。那么,数列和树木的成长有什么关联呢?由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这段文字意在说明:A.斐波那契数列表现为树本的年轮增长B.斐波那契数列在自然界中无处不在C.斐波那契数列在自然中的应用D.斐波那契数列表明植物在大自然中长期造应和进化
选项
A.斐波那契数列表现为树本的年轮增长
B.斐波那契数列在自然界中无处不在
C.斐波那契数列在自然中的应用
D.斐波那契数列表明植物在大自然中长期造应和进化
答案
C
解析
文段首先表述了什么是斐波那契数列,接着提出问题,就是该数列和树木生长的的关系,然后对这一问题做出了回答。A项未提及年轮;B项无处不在过于绝对;D项植物扩大概念和无中生有,文段是围绕树木来讲述的。因此,该题选择C项。
转载请注明原文地址:https://tihaiku.com/gongwuyuan/1267814.html
本试题收录于:
江西公务员行政能力测试题库省公务的行测分类
江西公务员行政能力测试
省公务的行测
相关试题推荐
A第一步,本题考查分数数列。 第二步,利用反约分将原数列转化为:,(),分子是公比为1/2的等比数列,所求项分子为1×1/2=1/2;分母是等差数列,则下
D第一步,本题考查非整数数列中的分数数列。 第二步,由于反约分后无明显规律,分数做差,考虑做差。两两做差得到新数列:、(),分子不变,分母为公差为3的等差
C第一步,本题考察非整数数列。 第二步,因后面的数字都有根号,因此考虑前面的整数也变为带根号的数字。观察到根号外面的数字有7和11,考虑构造质数数列。因此有,
A第一步,本题考查分数数列。 第二步,利用反约分将原数列转化为:,(),分子是公比为1/2的等比数列,所求项分子为1×1/2=1/2;分母是等差数列,则下
A第一步,本题考查分数数列。 第二步,利用反约分将原数列转化为:,分子是公比为1/2的等比数列,所求项分子为1×1/2=1/2;分母是等差数列,则下一项为4-
B第一步,本题考查非整数数列中的分数数列。 第二步,分数数列考虑反约分,原数列化为,分子是公比为3的等比数列,下一项为243×3=729;分母是公差为2的等差
C分数数列,我们将其整数部分与分数部分分别考虑。 整数部分:100,(),64,49,36; 分数部分3/4,(),16/12,64/36,256/108
C注意到各项分母是一个以2为公比的等比数列,故待填项分母是32;每一项的分子=分母-1=31,选C。
D第一步,本题考查非整数数列中的分数数列。 第二步,由于反约分后无明显规律,分数做差,考虑做差。两两做差得到新数列:、(),分子不变,分母为公差为3的等差
C第一步,本题考察非整数数列。 第二步,因后面的数字都有根号,因此考虑前面的整数也变为带根号的数字。观察到根号外面的数字有7和11,考虑构造质数数列。因此有,
随机试题
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.
Roadrage,officerage,andevenrelationshipragearefamiliartous.But
节点③中从下至上合理的构造顺序是()。 A.保温层、持钉层、防水层、找平
A. B. C. D.
()年以来,我国心血管病死亡率呈明显上升趋势,心血管病死亡率和死因构成比均居首位
引起手足徐动型脑瘫最常见的病因是A.早产 B.窒息 C.颅脑畸形 D.产伤
患者张某,女性,20岁,甲状腺肿大半年,有时心悸,多汗,食欲亢进,大便次数增多每
A.32种B.24种C.13种D.28种E.42种毒性中药材品种数量为
有机磷农药中毒出现烦躁、抽搐时,忌用的药物是A.地西泮 B.阿托品 C.吗啡
纸币之所以可以作为流通手段,是因为它本身具有价值。( )
最新回复
(
0
)