首页
登录
职称英语
Timekeeper: Invention of Marine
Timekeeper: Invention of Marine
游客
2025-02-14
15
管理
问题
Timekeeper: Invention of Marine Chronometer
A. Up to the middle of the 18th century, the navigators were still unable to exactly identify the position at sea, so they might face a great number of risks such as the shipwreck or running out of supplies before arriving at the destination. Knowing one’s position on the earth requires two simple but essential coordinates, one of which is the longitude.
B. The longitude is a term that can be used to measure the distance that one has covered from one’s home to another place around the world without the limitations of naturally occurring baseline like the equator. To determine longitude, navigators had no choice but to measure the angle with the naval sextant between Moon centre and a specific star— lunar distance—along with the height of both heavenly bodies. Together with the nautical almanac, Greenwich Mean Time (GMT) was determined, which could be adopted to calculate longitude because one hour in GMT means 15-degree longitude. Unfortunately, this approach laid great reliance on the weather conditions, which brought great inconvenience to the crew members. Therefore, another method was proposed, that is, the time difference between the home time and the local time served for the measurement. Theoretically, knowing the longitude position was quite simple, even for the people in the middle of the sea with no land in sight. The key element for calculating the distance travelled was to know, at the very moment, the accurate home time. But the greatest problem is: how can a sailor know the home time at sea?
C. The simple and again obvious answer is that one takes an accurate clock with him, which he sets to the home time before leaving. A comparison with the local time (easily identified by checking the position of the Sun) would indicate the time difference between the home time and the local time, and thus the distance from home was obtained. The truth was that nobody in the 18th century had ever managed to create a clock that could endure the violent shaking of a ship and the fluctuating temperature while still maintaining the accuracy of time for navigation.
D. After 1714, as an attempt to find a solution to the problem, the British government offered a tremendous amount of £20,000, which were to be managed by the magnificently named ’Board of Longitude’. If timekeeper was the answer (and there could be other proposed solutions, since the money wasn’t only offered for timekeeper), then the error of the required timekeeping for achieving this goal needed to be within 2.8 seconds a day, which was considered impossible for any clock or watch at sea, even when they were in their finest conditions.
E. This award, worth about £2 million today, inspired the self-taught Yorkshire carpenter John Harrison to attempt a design for a practical marine clock. In the later stage of his early career, he worked alongside his younger brother James. The first big project of theirs was to build a turret clock for the stables at Brockelsby Park, which was revolutionary because it required no lubrication. Harrison designed a marine clock in 1730, and he travelled to London in seek of financial aid. He explained his ideas to Edmond Halley, the Astronomer Royal, who then introduced him to George Graham, Britain’s first-class clockmaker. Graham provided him with financial aid for his early-stage work on sea clocks. It took Harrison five years to build Harrison Number One or HI. Later, he sought the improvement from alternate design and produced H4 with the giant clock appearance. Remarkable as it was, the Board of Longitude wouldn’t grant him the prize for some time until it was adequately satisfied.
F. Harrison had a principal contestant for the tempting prize at that time, an English mathematician called John Hadley, who developed sextant. The sextant is the tool that people adopt to measure angles, such as the one between the Sun and the horizon, for a calculation of the location of ships or planes. In addition, his invention is significant since it can help determine longitude.
G. Most chronometer forerunners of that particular generation were English, but that doesn’t mean every achievement was made by them. One wonderful figure in the history is the Lancastrian Thomas Earnshaw, who created the ultimate form of chronometer escapement—the spring detent escapement—and made the final decision on format and productions system for the marine chronometer, which turns it into a genuine modern commercial product, as well as a safe and pragmatic way of navigation at sea over the next century and half.
Reading passage has seven paragraphs, A-G.
Which paragraph contains the following information?
Write the correct letter, A-G, in boxes on your answer sheet.
NB You may use any letter more than once. [br] a description of Harrison’s background
选项
答案
E
解析
关于哈里森背景的描述。关键词Harrison、background。扫读E段,该段开头便提到了Harrison这个人的身份(一个自学成才的约克郡木匠)以及为什么参加这个发明比赛(受巨额奖励吸引),对应本题关键词background。因此,本题的正确答案为E。
转载请注明原文地址:https://tihaiku.com/zcyy/3956841.html
相关试题推荐
Timekeeper:InventionofMarine
Timekeeper:InventionofMarine
Timekeeper:InventionofMarine
ChooseTHREEletters,A-ETheinventionofdifferentgearsonabicycleaffected
ChooseTHREEletters,A-ETheinventionofdifferentgearsonabicycleaffected
ChooseTHREEletters,A-ETheinventionofdifferentgearsonabicycleaffected
ChooseTHREEletters,A-ETheinventionofdifferentgearsonabicycleaffected
In1974thespaceprobeMariner10discovered______Mercury’ssurfaceiscrater
TheBessemerprocessfor(converting)irontosteel(wasinvention)ofenormous
PatentsandInventionsWhenaninventionismade,thei
随机试题
Usetherulesofexponentstosimplifythefollowing.[img]2014m9x/ct_egreqj_egr
In1900,theworld’suseofpaperwasabout______foreachpersoninayear.[b
一个人的生命究竟有多大意义,这有什么标准可以衡量吗?提出一个绝对的标准当然很困难:但是,大体上看一个人对待生命的态度是否严肃认真,看他对待工作、生活的态
在明挖基坑开挖过程中,经监测发现支撑立柱发生缓慢隆起,过大的坑底隆起按基坑变形分
下列监测信用风险的主要指标和计算方法不正确的是() Ⅰ.预欺损失率=资产风
盐知母的炮制方法为()。A.盐水浸透后,文火微炒至变色B.文火微炒至变色,喷盐
下列关于城镇职工基本养老保险制度的说法中,错误的是()。A.职工按照国家规定的本
期货公司下列人员中,必须具有期货从业人员资格的是()A.财务负责人 B.董事长
呼吸道对粉尘的防御功能有( )。A.弥散作用 B.沉降作用 C.撞击作用
男,40岁。发作性心悸,头痛,大汗,发作时血压230/130mmHg,平素血压不
最新回复
(
0
)