首页
登录
职称英语
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] The
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] The
游客
2025-02-08
8
管理
问题
Astronomy: The Auroras
[br] The professor briefly explains how the auroras are formed.Indicate whether each sentence below is a part of the process. For each sentence, click in the correct box.
W: For centuries, people have told stories to explain the moving lights in the night sky—the curtains of greenish-white light with pink fringe. People described these lights as the breath of the Earth, powerful spirits, or angel light. An early twentiethcentury explorer wrote about the "bloody red" and "ghostly green" lights. These lights, of course, are the aurora borealis—the northern lights—and, in the south, the aurora australis. Most of the time they’re greenish-yellow, but sometimes they take colors from violet to red. The auroras can be seen at any time of the year, with the right atmospheric conditions. They’re most often seen near the North and South Poles, during times of maximum solar activity. The closer to the North or South Pole you are, the better you can see the lights.
The auroras occur in the ionosphere. The ionosphere is the layer of the upper atmosphere where high energy solar radiation strips electrons from oxygen and nitrogen atoms, and leaves them as positively charged ions. The auroras are the result of a complex interaction between the solar wind and the Earth’s magnetic field. Here’s what happens. The sun’s heat charges the particles in the solar wind, a stream of electrically charged subatomic particles that continually emanates from the sun. As the solar wind approaches Earth, it’s deflected by Earth’s magnetic field and diverted north and south toward the magnetic poles. The interaction between the solar wind and the magnetosphere generates beams of electrons. These electrons collide with atoms and molecules within the ionosphere near Earth’s magnetic poles. The collisions rip apart molecules and excite atoms. Thus, oxygen and nitrogen atoms in the ionosphere become "excited, "or ionized. The auroras happen when these ionized atoms return to their normal state from their excited, energized states. The ions combine with free electrons—as they do so, they emit radiation. Part of this radiation is visible light: the aurora borealis and aurora australis.
Yes, Simon?
M: Uh ... it sounds kind of like electricity.
W: Yes, that’s right. The auroras are an electrical phenomenon. As you know, an electrical generator has two components: a conductor and a magnetic field. To generate electricity, the conductor has to move across the field to produce a force. With the auroras, the conductor is the solar wind carrying a stream of charged particles.
M: So, what happens is, when, uh, when the charged particles reach Earth’s magnetic field, they, uh, move along in the field towards the north and south magnetic poles.
W: Exactly. And then the particles collide with gases in the atmosphere—oxygen and nitrogen—and the oxygen and nitrogen atoms get excited. And then, when the particles get de-excited and return to their normal state, they emit the auroras by releasing energy in the form of light. Oxygen releases either dark red or ghostly green. Nitrogen emits rosy pink or magenta. The activity of the auroras varies with the sun’s activity. When the sun is quiet, the auroras can be seen only in a small area. When the sun is active, however, the aurora borealis can be seen across southern Canada and the northern United States.
选项
答案
Yes: Oxygen and nitrogen atoms in the ionosphere become "excited":...oxygen and nitrogen atoms in the ionosphere become "excited, " or ionized.
No: Sunlight travels to Earth and is reflected back into space by clouds: Not mentioned in the lecture.
Yes: Ionized atoms de-energize and emit radiation as visible light: The auroras happen when these ionized atoms return to their normal state from their excited, energized states;...as they do so, they emit radiation. Part of this radiation is visible light
Yes: The solar wind interacts with Earth’s magnetic field: The auroras are the result of a complex interaction between the solar wind and the Earth’s magnetic field. (2.6)
解析
转载请注明原文地址:https://tihaiku.com/zcyy/3948323.html
相关试题推荐
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Whatphysicalfeat
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Selectthebirdth
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Listenagaintopa
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Whatisthemaini
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Basedonthe
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Whydoesthe
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Accordingto
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Whatarethe
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]Why
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
随机试题
The"GunpowderPlot"isassociatedwithamancalled______.A、JohnMiltonB、Olive
肉桂对心血管系统的作用有A.扩张外周血管,血压降低 B.促进心肌侧支循环开放,
()统计图常用于表示构成比。A.圆图 B.箱式图 C.百分条图 D.直条图
以下对青霉素的描述,正确的是()A:对革兰氏阴性杆菌有较强作用 B:肌内注射
患者女,40岁。1个半月前左下6因深龋及髓致急性牙髓炎,进行根管治疗后,症状消失
下列哪一项不是利用仪器测定含水量的方法()。A.烘干法B.甲苯法C.紫外线干燥
对发生法律效力的调解书和裁决书,一方当事人逾期不履行的,另一方当事人可以申请人民
人在每一瞬间,将心理活动选择了某些对象而忽略了另一些对象。这一特点指的是注意的(
A.石油醚 B.正丁醇 C.甲醇 D.乙醇 E.水可用于提取多糖、蛋白质
(2015年真题)同类应纳税凭证需要频繁贴花的,纳税人可根据实际情况自行决定是否
最新回复
(
0
)