首页
登录
职称英语
"Life in Our Solar System" Although we can imagine life b
"Life in Our Solar System" Although we can imagine life b
游客
2025-02-07
36
管理
问题
"Life in Our Solar System"
Although we can imagine life based on something other than carbon chemistry, we know of no examples to tell us how such life might arise and survive. We must limit our discussion to life as we know it and the conditions it requires. The most important requirement is the presence of liquid water, not only as part of the chemical reactions of life, but also as a medium to transport nutrients and wastes within the organism.
The water requirement
automatically
eliminates many worlds in our solar system. The moon is airless, and although some data suggest ice frozen in the soil at its poles, it has never had liquid water on its surface. In the vacuum of the lunar surface, liquid water would boil away rapidly. Mercury too is airless and cannot have had liquid water on its surface for long periods of time. Venus has some traces of water vapor in its atmosphere, but it is much too hot for liquid water to survive. If there were any lakes or oceans of water on its surface when it was young, they must have evaporated quickly. Even if life began there, no traces would be left now.
The inner solar system seems too hot, and the outer solar system seems too cold. The Jovian planets have deep atmospheres, and at a certain level, they have moderate temperatures where water might condense into liquid droplets. But it seems unlikely that life could begin there. The Jovian planets have no surfaces where oceans could nurture the beginning of life, and currents in the atmosphere seem destined to circulate gas and water droplets from regions of moderate temperature to other levels that are much too hot or too cold for life to survive.
A few of the satellites of the Jovian planets might have suitable conditions for life. Jupiter’s moon Europa seems to have a liquid-water ocean below its icy crust, and minerals dissolved in that water would provide a rich broth of possi- bilities for chemical evolution.A Nevertheless, Europa is not a promising site to search for life because conditions may not have remained
stable
for the billions of years needed for life to evolve beyond the microscopic stage. B If Jupiter’s moons interact gravitationally and modify their orbits, Europa may have been frozen solid at some points in history. C
→ Saturn’s moon Titan has an atmosphere of nitrogen, argon, and methane and may have oceans of liquid methane and ethane on its surface.D The chemistry of life that might crawl or swim on such a world is unknown, but life there may be unlikely because of the temperature. The surface of Titan is a deadly -179℃ (-290°F). Chemical reactions occur slowly or not at all at such low temperatures, so the chemical evolution needed to begin life may never have occurred on Titan.
→ Mars is the most likely place for life in our solar system. The evidence, however, is not encouraging. Meteorite ALH84001 was found on the Antarctic ice in 1984. It was probably part of debris ejected into space by a large impact on Mars. ALH84001 is important because a team of scientists studied it and announced in 1996 that it contained chemical and physical traces of ancient life on Mars.
Scientists were excited too, but being professionally skeptical, they began testing the results immediately.
In many cases, the results did not confirm the conclusion that life once existed 0n Mars.
Some chemical contamination from water on Earth has occurred, and some chemicals in the meteorite may have
originated
without the presence of life. The physical features that look like fossil bacteria may be mineral formations in the rock.
Spacecraft now visiting Mars may help us understand the past history of water there and paint a more detailed picture of present conditions. Nevertheless, conclusive evidence may have to wait until a geologist in a space suit can wander the dry streambeds of Mars cracking open rocks and searching for fossils.
We are left to conclude that, so far as we know, our solar system is bare of life except for Earth. Consequently, our search for life in the universe takes us to other planetary systems. [br] Look at the four squares [■] that show where the following sentence could be inserted in the passage. Such periods of freezing would probably prevent life from developing. Where could the sentence best be added? Click on a square [■] to insert the sentence in the passage.
选项
A、Square A.
B、Square B.
C、Square C.
D、Square D.
答案
C
解析
Reference is a transitional device that connects the insert sentence with the previous sentence. Such periods refers to "some points in history." Choices A, B, and D are not correct because such periods does not refer to phrases in the sentences that precede the insert options.
转载请注明原文地址:https://tihaiku.com/zcyy/3947342.html
相关试题推荐
AsystemwasdevelopedtocontroltrafficcongestionontheM25motorway.Expert
AsystemwasdevelopedtocontroltrafficcongestionontheM25motorway.Expert
AsystemwasdevelopedtocontroltrafficcongestionontheM25motorway.Expert
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalst
随机试题
[img]2010q3/ct_epem_epelist_0555_20111[/img][originaltext]Myfathercannotlive
国家“十五”攻关缺血性心血管疾病发病风险的评估是目前常用的健康风险评估方法之一,
不属于苯二氮类的镇静催眠药物是()。A:唑吡坦 B:阿普唑仑 C:奥沙西泮
挡土墙在墙后土压力作用下向后移动或转动时作用于墙背上的土压力叫做主动土压力。
缺铁性贫血的病因包括( )。A.铁消耗增加 B.膳食铁摄入不足 C.铁吸收
适合用来筹备子女教育金的投资工具是()。A:权证 B:教育储蓄和教育保险 C
2012—2015年,老龄机构单位数占社会服务机构单位数的比重最大的是:A
患者女,30岁。1月来脘腹痞塞不舒,不思饮食,恶心欲呕,泛吐痰涎,头晕目眩,体位
宋代下列哪些人享有继承权()A.在室女 B.遗腹子 C.户绝之女 D.奸
下列选项中,属于霍兰德提出的基本的职业兴趣类型的是()。A.现实型 B.研究
最新回复
(
0
)