首页
登录
职称英语
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitti
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitti
游客
2024-11-08
11
管理
问题
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go, an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. To date, no computer has been able to achieve a skill level beyond that of the casual player.
The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguing, intuition.
Along with intuition, pattern recognition is a large part of the game. While computers are good at crunching numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess game and see if there’s some major issue, " he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300, 000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By midgame, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kierulf, who wrote a program called SmartGo.
In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30, 000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourage programmers to advance basic work in artificial intelligence.
For that reason, Fotland said, "writing a strong Go program will teach us more about making computers think like people than writing a strong chess program." [br] Which of the following DOES NOT contribute to the complexity of programming a computer to play Go?
选项
A、Playing Go involves decision-making.
B、Playing Go involves pattern-matching.
C、The limitation of computer’s processing speed.
D、There exist too many possibilities in each move.
答案
A
解析
以下哪一要素没有构成围棋程序编写的难度?选项A错在虽然人工智能涉及了决策制订,但文中并没有提到是这一点使围棋程序编写尤其困难,以常识而言,象棋程序中也涉及决策制订。而其他选项在下文都有特别提到,用以强调围棋程序编写之难。
转载请注明原文地址:https://tihaiku.com/zcyy/3836036.html
相关试题推荐
PASSAGETHREE[br]WhydoestheauthormentionmathematicianJohnNashinthebe
EarlyinthefilmABeautifulMind,themathematicianJohnNashisseensitti
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Achild’sworldissupposedtobefreshandbeautiful,fullofwonderandex
Contrastmaymakesomethingappearmorebeautifulthanitiswhen______alone.A
随机试题
NarratorListentopartofalectureinacomputerscienceclass.Nowgetready
She()beillbecauseIsawherplayingtennisjustnow.A、can’tB、couldn’tC、must
It’struethat"Asmallchangecanmakeabigdifference"inourlife.Abet
[originaltext]M:I’mabitworriedaboutgivingaspeechatthemeetingtomorro
某企业建立了分销渠道,首先通过代理商将产品销售给批发商,再由批发商销售给零售商,
质粒是细菌的A.核质DNAB.胞浆中的rRNAC.胞浆中的cDNAD.胞浆颗粒E
当代知名的动漫设计大师,绝大部分还没从动漫设计学校毕业就已经离开学校,开始自己的
()是心理测量的工具,它是测量一个行为样本的系统程序。A.物理测量 B.心理
(2017年真题)依据资本资产定价模型,资产的必要收益率不包括对公司特有风险的补
通气/血流比值是指 A.肺通气量与每分肺血流量之比 B.功能余气量与
最新回复
(
0
)