首页
登录
职称英语
The Cloning TechnologyI. The difference
The Cloning TechnologyI. The difference
游客
2024-11-04
9
管理
问题
The Cloning Technology
I. The difference between a【T1】________colony and cloning a mammal
A. Clarify the illusion: scientists have been cloning genes for years.
B. Definition of clone: a clone is population of cells produced by【T2】________; all the cells in a clone have exactly the【T3】________, using a process known as "recombinant【T4】________
technology".
C. Clone a mammal: "nuclear transfer".
II. Genes, chromosomes and the genome
A. Genes
- DNA—its【T5】___________makes it divide easily.
-【T6】________of chemical groups within DNA form genes.
- Genes determine what【T7】________a given cell will have.
B. Chromosomes: genes are linked together to form chromosomes.
C. Genome: the entire collection of chromosomes in each cell.
D.【T8】_______________genes enables scientists to mass-produce proteins that can be used to【T9】_______________.
III. The process of cloning a gene
A. Remove DNA from the cell.
B. DNA is cut into pieces using【T10】_________.
C. To replicate DNA, attach them to nonmammalian DNA.
D. Plasmids are easily incorporated into【T11】______ and multiply by themselves.
E. The plasmid carries the gene into a【T12】________ cell.
F. The gene【T13】________a plasmid and some proteins.
G. The plasmid【T14】________.
H. Copies passed to the cell’s【T15】_________.
I. Each cell contains one or more copies of the recombinant DNA molecule. The gene is now considered cloned. [br] 【T5】
The Cloning Technology
Today, we are going to talk about the cloning technique. First, we will see the difference between a single cell colony and cloning a mammal. Then we will focus on cell cloning process and its scientific use.
In March 1997, the world said "hello" to Dolly, the first mammal to be cloned from an adult cell. We asked ourselves: Would the world soon be populated with human clones? Did you know that cloning isn’t new? In fact, scientists have been cloning genes for many years in laboratories around the world. Of course, cloning a gene and cloning a whole mammal are quite different in terms of process and product. But just how do you get from a single cell to a clone?
We generally think of cloning as producing a duplicate of something. Scientists, however, usually use the term clone in referring to cells. A clone is population of cells produced by one ancestor. Because of the way cells multiply, all the cells in a clone have exactly the same genetic makeup. Gene cloning uses a process known as "recombinant DNA technology". By contrast, cloning a mammal, such as the sheep Dolly, involves a technology known as "nuclear transfer". Although the end result is the same, the actual processes of gene cloning and mammalian cloning are quite different. But we need to start from the beginning to understand how these complicated and amazing bioengineering technologies evolved.
Now, we will study on what genes, chromosomes, and the genome are.
Within the body of a mammal, tissues are made of cells. Inside each cell is a long molecule called DNA. Its shape enables it to divide easily. Arrangements of chemical groups within DNA form genes. Genes direct cells to produce proteins, and thus determine what function a given cell will have. For example, skin cells produce proteins which are present in skin tissue, and blood cells produce a protein present in blood. Genes essentially tell each cell what type it is. Genes are linked together to form chromosomes. The entire collection of chromosomes in each of your cells is called genome. All the cells in your body contain the same genome. Once you realize that all cells contain the information for making the whole organism, you know that cloning is theoretically possible.
But what makes a skin cell different from a blood cell? The chromosomes within the nucleus of each cell are folded in various ways. Genes that are buried within the chromosomes are inactive, or switched off, while genes on the surface of the chromosomes are active. In a skin cell, the genes for producing skin proteins are active, while in a blood cell, the gene is active. Gene cloning is the process of producing a population of cells all of which contain a specific gene. Using these identical cells, scientists can study the entire genome and obtain clues to how genes are switched on and off.
Cloning genes also enables scientists to mass-produce proteins that can be used to treat a variety of diseases. For example, the cells in the pancreas produce a protein called insulin which is important in helping the body maintain appropriate blood sugar levels. Some people have a disease called diabetes because their cells don’t produce enough insulin. Cloning the insulin gene has provided a way of producing large amounts of human insulin which is used to treat diabetes.
Then, we are going to disclose the mystery of cloning a gene. To clone a gene, scientists remove the DNA from a cell, isolate the specific gene of interest, and then get it to multiply. Sound simple? Not so fast. Let’s look at each step.
First the DNA must be removed from the cell. Over the years scientists have perfected chemical methods for doing this, based on the physical properties of DNA molecules. The DNA is then cut into pieces using special proteins. You may think of these special proteins as little knives programmed to cut the DNA in specific places. By using the correct special proteins, scientists can isolate whatever gene they want.
Once the gene is isolated, it can then be duplicated. Mammalian genes do not reproduce by themselves, however. To replicate them, scientists attach them to pieces of non-mammalian DNA that do replicate on their own. The most common procedure uses small circular pieces of DNA called plasmids that come from bacteria. Plasmids have two useful characteristics. They are easily incorporated into bacteria; they multiply by themselves inside bacteria. The gene of interest is combined with a plasmid and some proteins. The proteins open the plasmid circle and stitch in the new gene. The result is a recombinant DNA molecule. The plasmid carries the gene into a host cell. Once inside the host, the plasmid multiplies, making lots of copies of itself and the gene it contains.
When the host cell divides, copies of the recombinant DNA molecule are passed to the cell’s offspring. As the bacterial cells continue to divide, a colony of identical cells is produced. Each cell contains one or more copies of the recombinant DNA molecule. The gene is now considered cloned.
Let’s go back now to the example of the insulin gene. Prior to cloning this gene, scientists purified insulin from animal sources, like pigs or cows. Scientists isolated the insulin gene from the DNA of human pancreatic cells. Then they attached the insulin gene to a plasmid and were able to get bacterial cells to incorporate the recombinant DNA. The result was a colony of bacteria that continually produced human insulin—a little insulin producing factory!
选项
答案
shape
解析
细节题。讲座里明确做了解释说:Inside each cell is a long molecule called DNA.Its shape enables it to divide easily.(DNA容易分裂是由它的形状决定的。)所以答案为shape。
转载请注明原文地址:https://tihaiku.com/zcyy/3830721.html
相关试题推荐
PASSAGETWO[br]MentionatleastTWOdifferencesbetweenthemutes(Para.1).An
PASSAGETWO[br]MentionatleastTWOdifferencesbetweenthemutes(Para.1).An
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
TheCloningTechnologyI.Thedifference
PassageThree[br]What’sthedifferencebetweenMichaelEisnerandBobIger
随机试题
神农架有一个关于叫神农的人(也被称为炎帝)的神话故事
很高兴在这次教育国际论坛上与大家交流我对21世纪教育的看法。21世纪,我们看到知识成了创造力和财富的源泉。知识能通过网络分享,我们生活在一个由网络连通的
订立合同的当事人依照有关法律对合同内容进行协商并达成一致意见时的合同状态称为()
被誉为“俄罗斯音乐之父”的作曲家是()。A.鲍罗丁 B.柴科夫斯基 C
患者,男性,27岁。农民。因发热、头痛、腰痛、口鼻出血5天入院。20天前参加秋收
左边给定的是多面体的外表面,右边哪一项能由它折叠而成?请把它找出来。 A.如上
下列选项中,2020年各季度全国中心城市客运总量环比增速从低到高排序正确
某企业将预收的货款计入“预收账款”科目,在收到款项的当期不确认收入,而在实际发出
党的十九大围绕实现()奋斗目标,对经济建设、政治建设、文化建设、社会建设、生态
D
最新回复
(
0
)