首页
登录
职称英语
About a century ago, the Swedish physical scientist Arrhenius proposed a low
About a century ago, the Swedish physical scientist Arrhenius proposed a low
游客
2024-04-22
69
管理
问题
About a century ago, the Swedish physical scientist Arrhenius proposed a low of classical chemistry that relates chemical reaction rate to temperature. According to his equation, chemical reactions are increasingly unlikely to occur as temperature approaches absolute zero, and at absolute zero, reactions stop. However, recent experiment evidence reveals that although the Arrhenius equation is generally accurate in describing the kind of chemical reaction that occurs at relatively high temperature, at temperatures closer to zero a quantum-mechanical effect known as tunneling comes into play; this effect accounts for chemical reactions that are forbidden by me principles of classical chemistry. Specifically, entire molecules can tunnel through the barriers of repulsive forces from other molecules and chemically react even though these molecules do not have sufficient energy, according to classical chemistry, to overcome the repulsive barrier.
The rate of any chemical reaction, regardless of the temperature at which it takes place, usually depends on a very important characteristic known as its activation energy. Any molecule can be imagined to reside at the bottom of a so-called potential well of energy. A chemical reaction corresponds to the transition of a molecule from the bottom of one potential well to the bottom of another. In classical chemistry, such a transition can be accomplished only by going over the potential barrier between the well, the height of which remains constant and is called the activation energy of the reaction. In tunneling, the reactings molecules tunnel from the bottom of one to the bottom of another well without having to rise over the barrier between the two wells. Recently researchers have developed the concept of tunneling temperature: the temperature below which tunneling transitions greatly outnumber Arrhenius transitions, and classical mechanics gives way to its quantum counterpart.
This tunneling phenomenon at very low temperatures suggested my hypothesis about a cold prehistory of life: formation of rather complex organic molecules in the deep cold of outer space, where temperatures usually reach only a few degrees Kelvin. Cosmic rays might trigger the synthesis of simple molecules, such as interstellar formaldehyde, in dark clouds of interstellar dust. Afterward complex organic molecules would be formed, slowly but surely, by means of tunneling. After I offered my hypothesis, Hoyle and Wickramashinghe argued that molecules of interstellar formaldehyde have indeed evolved into stable polysaccharides such as cellulose and starch. Their conclusions, although strongly disputed, have generated excitement among investigators such as myself who are proposing that the galactic clouds are the places where the prebiological evolution of compounds necessary to life occurred. [br] In which of the following ways are the mentioned chemical reactions and tunneling reactions alike?
选项
A、In both types of reactions, reacting molecules have to rise over the barrier between the two wells.
B、In both types of reactions, a transition is made from the bottom of one potential well to the bottom of another.
C、In both types of reactions, reacting molecules are able to go through the barrier between the two wells.
D、In neither type of reaction does the rate of a chemical reaction depend on its activation energy.
答案
B
解析
细节题。根据“chemical reactions and tunneling reactions”定位到文章第二段In classical chemistry,such a transition can be accomplished only by going over thepotential barrier between the well,the height of which remains constant and is called theactivation energy of the reaction.In tunneling,the reacting molecules tunnel from thebottom of one to the bottom of another well without having to rise over the barrierbetween the two wells.“在经典化学中,这种跃迁只有跨过两阱之间势垒才能完成。位垒之高度为常数(固定不变)。这种跃迁叫做能量活化。在隧道效应中作反应的分子从一个势阱的底部通到另一个势阱底部不需要上升跨越两阱之间的位垒。”可见经典化学定理和隧道效应中都有从一个潜在的势阱底部到另一个底部的转换。和选项B表述一致,所以B为正确答案。
转载请注明原文地址:https://tihaiku.com/zcyy/3566748.html
相关试题推荐
Aboutacenturyago,theSwedishphysicalscientistArrheniusproposedalow
Aboutacenturyago,theSwedishphysicalscientistArrheniusproposedalow
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
Aboutacenturyago,theSwedishphysicalscientistArrheniusproposedalow
Aboutacenturyago,theSwedishphysicalscientistArrheniusproposedalow
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
Before1965manyscientistspicturedthecirculationoftheocean’swaterma
随机试题
有档案保管条件不符合规定要求、未按规定向档案馆移交档案等行为的,县级以上档案行政
现金预算的内容不包括()。A.经营现金收入 B.经营现金支出 C.预计实
男性,67岁,拟在体外循环下行冠状动脉旁路移植术。术前药物治疗不包括 A.钙通
介绍经纪商(简称IB)这一称呼来源于(),在国际上既可以是机构,也可以是个人,
下列不属于更年期综合征的是A.生殖器官逐渐萎缩 B.阴道分泌物增多 C.尿急
二恶英是一种持久性有机污染物,目前对二恶英的治理存在各种方面的验证题。首先,对二
A.3yy´=1 B. C.y´=3y+1 D.
简述现代企业人力资源管理各个历史发展阶段的特点。
银行业监管的发展历程在表象上反映为管制、放松、重新管制。()
高渗性缺水与低渗性缺水临床表现的主要鉴别点是A.手足麻木 B.口渴明显 C.
最新回复
(
0
)