首页
登录
职称英语
Trust Me, I’m a Robot[A] With robots now emerging from their industrial cag
Trust Me, I’m a Robot[A] With robots now emerging from their industrial cag
游客
2024-04-07
13
管理
问题
Trust Me, I’m a Robot
[A] With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists are concerned about the safety implications beyond the factory floor. To address these concerns, leading robot experts have come together to try to find ways to prevent robots from harming people. Inspired by the Pugwash Conferences—an international group of scientists, academics and activists founded in 1957 to campaign for the non-proliferation of nuclear weapons—the new group of roboethicists met earlier this year in Genoa, Italy, and announced their initial findings in March at the European Robotics Symposium in Palermo, Sicily.
[B] "Security and safety are the big concerns," says Henrik Christensen, chairman of the European Robotics Network at the Swedish Royal Institute of Technology in Stockholm. Should robots that are strong enough or heavy enough to crush people be allowed into homes? Is "system malfunction" a justifiable defence for a robotic fighter plane that contravenes (违反) the Geneva Convention and mistakenly fires on innocent civilians?
[C] "These questions may seem hard to understand but in the next few years they will become increasingly relevant," says Dr. Christensen. According to the United Nations Economic Commission for Europe’s World Robotics Survey, in 2002 the number of domestic and service robots more than tripled, nearly surpassing their industrial counterparts. By the end of 2003 there were more than 600,000 robot vacuum cleaners and lawn mowers—a figure predicted to rise to more than 4m by the end of next year. Japanese industrial firms are racing to build humanoid robots to act as domestic helpers for the elderly, and South Korea has set a goal that 100% of households should have domestic robots by 2020. In light of all this, it is crucial that we start to think about safety guidelines now, says Dr. Christensen. Stop right there
[D] So what exactly is being done to protect us from these mechanical menaces? "Not enough," says Blay Whitby. This is hardly surprising given that the field of "safety-critical computing" is barely a decade old, he says. But things are changing, and researchers are increasingly taking an interest in trying to make robots safer. One approach, which sounds simple enough, is try to program them to avoid contact with people altogether. But this is much harder than it sounds. Getting a robot to navigate across a cluttered room is difficult enough without having to take into account what its various limbs or appendages might bump into along the way.
[E] "Regulating the behaviour of robots is going to become more difficult in the future, since they will increasingly have self-learning mechanisms built into them," says Gianmarco Veruggio. "As a result, their behaviour will become impossible to predict fully," he says, "since they will not be behaving in predefined ways but will learn new behaviour as they go."
[F] Then there is the question of unpredictable failures. What happens if a robot’s motors stop working, or it suffers a system failure just as it is performing heart surgery or handing you a cup of hot coffee? You can, of course, build in redundancy by adding backup systems, says Hirochika Inoue. But this guarantees nothing, he says. "One hundred per cent safety is impossible through technology," says Dr. Inoue. This is because ultimately no matter how thorough you are, you cannot anticipate the unpredictable nature of human behaviour, he says. Or to put it another way, no matter how sophisticated your robot is at avoiding people, people might not always manage to avoid it, and could end up tripping over it and falling down the stairs.
Legal problems
[G] In any case, says Dr. Inoue, the laws really just summarize commonsense principles that are already applied to the design of most modern appliances, both domestic and industrial. Every toaster, lawn mower and mobile phone is designed to minimize the risk of causing injury—yet people still manage to electrocute (电死) themselves, lose fingers or fall out of windows in an effort to get a better signal. At the very least, robots must meet the rigorous safety standards that cover existing products. The question is whether new, robot-specific rules are needed—and, if so, what they should say.
[H] "Making sure robots are safe will be critical," says Colin Angle of iRobot, which has sold over 2m "Roomba" household-vacuuming robots. But he argues that his firm’s robots are, in fact, much safer than some popular toys. "A radio-controlled car controlled by a six-year old is far more dangerous than a Roomba," he says. If you tread on a Roomba, it will not cause you to slip over, instead, a rubber pad on its base grips the floor and prevents it from moving. "Existing regulations will address much of the challenge," says Mr. Angle. "I’m not yet convinced that robots are sufficiently different that they deserve special treatment."
[I] Robot safety is likely to surface in the civil courts as a matter of product liability. "When the first robot carpet-sweeper sucks up a baby, who will be to blame?" asks John Hallam, a professor at the University of Southern Denmark in Odense. If a robot is autonomous and capable of learning, can its designer be held responsible for all its actions? Today the answer to these questions is generally "yes". But as robots grow in complexity it will become a lot less clear cut, he says.
[J] "Right now, no insurance company is prepared to insure robots," says Dr. Inoue. But that will have to change, he says. Last month, Japan’s Ministry of Trade and Industry announced a set of safety guidelines for home and office robots. They will be required to have sensors to help them avoid collisions with humans; to be made from soft and light materials to minimize harm if a collision does occur; and to have an emergency shut-off button. This was largely prompted by a big robot exhibition held last summer, which made the authorities realize that there are safety implications when thousands of people are not just looking at robots, but mingling with them, says Dr. Inoue.
[K] However, the idea that general-purpose robots, capable of learning, will become widespread is wrong, suggests Mr. Angle. It is more likely, he believes, that robots will be relatively dumb machines designed for particular tasks. Rather than a humanoid robot maid, "it’s going to be a heterogeneous (不同种类的) swarm of robots that will take care of the house," he says. [br] It sounds easier said than done to program robots to avoid contact with people.
选项
答案
D
解析
根据题目中的program和avoid contact with people定位至D段。该段倒数第2、3句提到,通过程序设置使它们完全避免与人接触的方法听起来十分简单,但做起来困难。题目中的如sounds easier said than done是对原文this is much harder than it sounds的同义替换。
转载请注明原文地址:https://tihaiku.com/zcyy/3544127.html
相关试题推荐
造成这一结果的原因有很多,其中包括不断增长的机动车数量和工业品产量。Growingmotorvehiclesandindustrialoutputa
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegivento
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegivento
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegivento
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegivento
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegivento
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcag
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcag
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcag
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcag
随机试题
Itisunderstoodthatinafavorableclimate______.[br]Whydidancientpeopl
Theycallthemthenewbreadearners.Theyarewomen,andtheyaresettota
消防控制室图形显示装置是消防控制室用来完成火灾报警、故障信息显示的消防报警设备,
一新生儿,生后5天,在家接生,患儿于生后4天起,喂奶困难,乳头不易塞入口中,时有
等渗性缺水病人,若静脉大量输入等渗盐水可导致()A.血氯过高 B.血钠过
全科医生应诊的四大任务中不包括A.解决病人诊断和治疗问题 B.确认并处理现存医
疼痛伴有沉重之感,是因A.寒邪凝滞B.气机阻滞C.瘀血阻滞D.湿邪困阻E.火邪窜
全变态昆虫的发育过程为A:卵→若虫→蛹→成虫B:卵→幼虫→若虫→蛹→成虫C:
动态评价发现()的设备应根据问题性质和严重程度及时调整检修策略。缺陷$;$危急
湿式凿岩水、风操作正确的是()。A.先开风后开水,先关水后关风 B.先开
最新回复
(
0
)