首页
登录
职称英语
Do music lessons really make chi
Do music lessons really make chi
游客
2024-03-07
15
管理
问题
Do music lessons really make children smarter?
A) A recent analysis found that most research mischaracterizes the relationship between music and skills enhancement.
B) In 2004, a paper appeared in the journal Psychological Science, titled "Music Lessons Enhance IQ." The author, composer and psychologist Glenn Schellenberg, had conducted an experiment with 144 children randomly assigned to four groups: one learned the keyboard for a year, one took singing lessons, one joined an acting class, and a control group had no extracurricular training. The IQ of the children in the two musical groups rose by an average of seven points in the course of a year; those in the other two groups gained an average of 4.3 points.
C) Schellenberg had long been skeptical of the science supporting claims that music education enhances children’s abstract reasoning, math, or language skills. If children who play the piano are smarter, he says, it doesn’t necessarily mean they are smarter because they play the piano. It could be that the youngsters who play the piano also happen to be more ambitious or better at focusing on a task. Correlation, after all, does not prove causation.
D) The 2004 paper was specifically designed to address those concerns. And as a passionate musician, Schellenberg was delighted when he turned up credible evidence that music has transfer effects on general intelligence. But nearly a decade later, in 2013, the Education Endowment Foundation funded a bigger study with more than 900 students. That study failed to confirm Schellenberg’s findings, producing no evidence that music lessons improved math and literacy skills.
E) Schellenberg took that news in stride while continuing to cast a skeptical eye on the research in his field. Recently, he decided to formally investigate just how often his fellow researchers in psychology and neuroscience make what he believes are erroneous—or at least premature—causal connections between music and intelligence. His results, published in May, suggest that many of his peers do just that.
F) For his recent study, Schellenberg asked two research assistants to look for correlational studies on the effects of music education. They found a total of 114 papers published since 2000. To assess whether the authors claimed any causation, researchers then looked for telltale verbs in each paper’s title and abstract, verbs like "enhance," "promote," "facilitate," and "strengthen." The papers were categorized as neuroscience if the study employed a brain imaging method like magnetic resonance, or if the study appeared in a journal that had "brain," "neuroscience," or a related term in its title. Otherwise the papers were categorized as psychology. Schellenberg didn’t tell his assistants what exactly he was trying to prove.
G) After computing their assessments, Schellenberg concluded that the majority of the articles erroneously claimed that music training had a causal effect. The overselling, he also found, was more prevalent among neuroscience studies, three quarters of which mischaracterized a mere association between music training and skills enhancement as a cause-and-effect relationship. This may come as a surprise to some. Psychologists have been battling charges that they don’t do "real" science for some time—in large part because many findings from classic experiments have proved unreproducible. Neuroscientists, on the other hand, armed with brain scans and EEGs (脑电图), have not been subject to the same degree of critique.
H) To argue for a cause-and-effect relationship, scientists must attempt to explain why and how a connection could occur. When it comes to transfer effects of music, scientists frequently point to brain plasticity—the fact that the brain changes according to how we use it. When a child learns to play the violin, for example, several studies have shown that the brain region responsible for the fine motor skills of the left hand’s fingers is likely to grow. And many experiments have shown that musical training improves certain hearing capabilities, like filtering voices from background noise or distinguishing the difference between the consonants (辅音) ’b’ and ’g’.
I) But Schellenberg remains highly critical of how the concept of plasticity has been applied in his field. "Plasticity has become an industry of its own," he wrote in his May paper. Practice does change the brain, he allows, but what is questionable is the assertion that these changes affect other brain regions, such as those responsible for spatial reasoning or math problems.
J) Neuropsychologist Lutz Jancke agrees. "Most of these studies don’t allow for causal inferences," he said. For over two decades, Jancke has researched the effects of music lessons, and like Schellenberg, he believes that the only way to truly understand their effects is to run longitudinal studies. In such studies, researchers would need to follow groups of children with and without music lessons over a long period of time—even if the assignments are not completely random. Then they could compare outcomes for each group.
K) Some researchers are starting to do just that. The neuroscientist Peter Schneider from Heidelberg University in Germany, for example, has been following a group of children for ten years now. Some of them were handed musical instruments and given lessons through a school-based program in the Ruhr region of Germany called Jedem Kind ein Instrument, or "an instrument for every child," which was carried out with government funding. Among these children, Schneider has found that those who were enthusiastic about music and who practiced voluntarily showed improvements in hearing ability, as well as in more general competencies, such as the ability to concentrate.
L) To establish whether effects such as improved concentration are caused by music participation itself, and not by investing time in an extracurricular activity of any kind, Assal Habibi, a psychology professor at the University of Southern California, is conducting a five-year longitudinal study with children from low-income communities in Los Angeles. The youngsters fall into three groups: those who take after-school music, those who do after-school sports, and those with no structured after-school program at all. After two years, Habibi and her colleagues reported seeing structural changes in the brains of the musically trained children, both locally and in the pathways connecting different parts of the brain.
M)That may seem compelling, but Habibi’s children were not selected randomly. Did the children who were drawn to music perhaps have something in them from the start that made them different but eluded the brain scanners? "As somebody who started taking piano lessons at the age of five and got up every morning at seven to practice, that experience changed me and made me part of who I am today," Schellenberg said. "The question is whether those kinds of experiences do so systematically across individuals and create exactly the same changes. And I think that is that huge leap of faith."
N) Did he have a hidden talent that others didn’t have? Or more endurance than his peers? Music researchers tend, like Schellenberg, to be musicians themselves, and as he noted in his recent paper, "the idea of positive cognitive and neural side effects from music training (and other pleasurable activities) is inherently appealing." He also admits that if he had children of his own, he would encourage them to take music lessons and go to university. "I would think that it makes them better people, more critical, just wiser in general," he said.
O) But those convictions should be checked at the entrance to the lab, he added. Otherwise, the work becomes religion or faith. "You have to let go of your faith if you want to be a scientist." [br] Glenn Schellenberg’s findings at the beginning of this century were not supported by a larger study carried out some ten years later.
选项
答案
D
解析
注意抓住题干中的关键信息Glenn Schellenberg’s findings at the beginning of this century和a larger study carried out some ten years later。原文中关于格伦.舍伦贝格在本世纪初的研究以及10年后的规模更大的研究等内容出现在D段。D段前两句指出,舍伦贝格2004年的研究结论一有可靠证据证明音乐对一般智力有迁移效应。后两句则是关于近10年后的那次更大规模研究的介绍:这次研究对象覆盖了900多名学生,但是这项研究未能证实舍伦贝格的发现,没有为音乐课提高数学和读写能力提供任何证据。题干是对D段段落大意的概括。题干中的were not supported by对应原文中的failed to confirm和producing no evidence。
转载请注明原文地址:https://tihaiku.com/zcyy/3514693.html
相关试题推荐
坏消息:吸烟的人的确要比不吸烟的人更苗条,而戒烟的确会引起体重的增加,尽管无人知其原因。 Badnews;Smokersreallydotend
“我确实感到是我辜负了他们,”他说,“如果我是个更优秀的老师,也许我就能打动他们了。” "IreallyfeellikeIfailedthem
借鉴referto;drawlessonsfrom
[originaltext]M:It’sreallyamazinghowmanycolorsthereareintheseThaisi
[originaltext]M:It’sreallyamazinghowmanycolorsthereareintheseThaisi
[originaltext]W:Hi,Tim.I’mreallysorrytohearaboutyourdad.Mysincerest
[originaltext]W:Hi,Tim.I’mreallysorrytohearaboutyourdad.Mysincerest
[originaltext]Canyoureallymakenewfriendsasanadult?Imean,there’sp
[originaltext]Canyoureallymakenewfriendsasanadult?Imean,there’sp
[originaltext]Canyoureallymakenewfriendsasanadult?Imean,there’sp
随机试题
Oneofthemostcommonhumanfearsisscarcity.Manypeopleareafraidofno
Thelifeexpectanciesofeventheveryoldhaveincreasedsignificantlyinrecen
Completeeachsentencewiththecorrectending,A-E,below.Writethecorrectle
中国的四大名著(theFourGreatClassicalNovels)指创作于明清时期的四部最伟大、最有影响力的小说。阅读四大名著,可以了解中
Manyofusstilltendtoregardemotionsasinterferingwithrationalthought,a
A. B. C. D.
下列关于商业银行流动性监管核心指标的说法不正确的是( )。A.流动性比例=流动
以下说法错误的是()。A.当光(电)缆线路无法避开雷暴严重地域时,应采用消弧线
我国生活饮用水水质卫生标准(GB5749-85)共规定了四组35项水质标准,其
以下治理痛风的药物中,能抑制尿酸生成的是A.丙磺舒 B.双氯酚酸 C.秋水仙
最新回复
(
0
)