首页
登录
职称英语
"Weather and Chaotic Systems" Weather and climate are closely related, but th
"Weather and Chaotic Systems" Weather and climate are closely related, but th
游客
2024-01-03
15
管理
问题
"Weather and Chaotic Systems"
Weather and climate are closely related, but they are not quite the same thing. In any particular location, some days may be hotter or cooler, clearer or cloudier, calmer or stormier than others. The ever-varying combination of winds, clouds, temperature, and pressure is what we call weather. Climate is the long-term average of weather, which means it can change only on much longer time scales. The complexity of weather makes it difficult to predict, and at best, the local weather can be predicted only a week or so in advance.
Scientists today have a very good understanding of the physical laws and mathematical equations that govern the behavior and motion of atoms in the air, oceans, and land. Why, then, do we have so much trouble predicting the weather? To understand why the weather is so unpredictable we must look at the nature of scientific prediction.
Suppose you want to predict the location of a car on a road 1 minute from now. You need two basic pieces of information: where the car is now, and how fast it is moving. If the car is now passing Smith Road and heading north at 1 mile per minute, it will be 1 mile north of Smith Road in 1 minute.
Now, suppose you want to predict the weather. Again, you need two basic types of information: (1) the current weather and (2) how weather changes from one moment to the next. You could attempt to predict the weather by creating a "model world." For example, you could overlay a globe of the Earth with graph paper and then specify the current temperature, pressure, cloud cover, and wind within each square. These are your starting points, or initial conditions. Next, you could input all the initial conditions into a computer, along with a set of equations (physical laws) that describe the processes that can change weather from one moment to the next.
Suppose the initial conditions represent the weather around the Earth at this very moment and you run your computer model to predict the weather for the next month in New York City. The model might tell you that tomorrow will be warm and sunny, with cooling during the next week and a major storm passing through a month from now. But suppose you run the model again, making one minor change in the initial conditions—say, a small change in the wind speed somewhere over Brazil. A This slightly different initial condition will not change the weather prediction for tomorrow in New York City. B But for next month’s weather, the two predictions may not agree at all! C
The disagreement between the two predictions arises because the laws governing weather can cause very tiny changes in initial conditions to be greatly magnified over time. D This extreme sensitivity to initial conditions is sometimes called the butterfly effect: If initial conditions change by as much as the flap of a butterfly’s wings, the resulting prediction may be very different.
The butterfly effect is a hallmark of chaotic systems. Simple systems are described by linear equations in which, for example, increasing a cause produces a proportional increase in an effect. In contrast, chaotic systems are described by nonlinear equations, which allow for subtler and more intricate interactions. For example, the economy is nonlinear because a rise in interest rates does not automatically produce a corresponding change in consumer spending. Weather is nonlinear because a change in the wind speed in one location does not automatically produce a corresponding change in another location.
Despite their name, chaotic systems are not necessarily random. In fact, many chaotic systems have a kind of underlying order that explains the general features of their behavior even while details at any particular moment remain unpredictable. In a sense, many chaotic systems—like the weather—are "predictably unpredictable." Our understanding of chaotic systems is increasing at a tremendous rate, but much remains to be learned about them. [br] Why is weather considered a chaotic system?
选项
A、Because it is made up of random features
B、Because it is not yet very well understood
C、Because it is described by nonlinear equations
D、Because it does not have an orderly structure
答案
C
解析
"... chaotic systems are described by nonlinear equations." Choice A is not correct because chaotic systems [like weather] "are not completely random." Choice B is true, but it is not the reason why weather is considered a chaotic system. Choice D is not correct because many chaotic systems are "’predictably unpredictable.’"
转载请注明原文地址:https://tihaiku.com/zcyy/3329629.html
相关试题推荐
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.CLIMATE
随机试题
【S1】[br]【S10】redistributing改为toredistribute。本题为动词形式的误用。根据句意,重新分配旧房是比较具体的动作,用动
在中国,人们见面时喜欢问:“你去哪儿?”或“你吃了吗?”大多数时候,人们并非真正想知道你要去哪里或吃饭了没有。实际上,那只是一种打招呼的方式。与西方的风
折半(二分)查找法适用的线性表应该满足( )的要求。A.链接方式存储、元素有序
超前围岩深孔预注浆多用于断面较大和不允许有过大沉陷的各类地下工程().
下列有关线性回归分析的说法中,不正确的是()。A.利用一个回归方程,因变量和自变
香加皮的功效是A.利水渗湿,解毒 B.利水通淋,清热排脓 C.利水消肿
能代表患者血清杀菌力的是A.无肉眼可见菌生长的血清最高稀释管B.菌落计数等于或小
各种运输方式内外部的各个方面的构成和联系,就是( )。 A.运输系统
下列选项中,痛风者应慎用哪种药物()。A.螺内酯 B.甘露醇 C.氨苯
粉尘对人体的伤害程度受粉尘溶解度的影响。其影响程度随粉尘性质不同而不同。主要呈机
最新回复
(
0
)