首页
登录
职称英语
[img]2018m9s/ct_etoefz_etoeflistz_201808_0056[/img] [br] Why does the professor
[img]2018m9s/ct_etoefz_etoeflistz_201808_0056[/img] [br] Why does the professor
游客
2024-01-03
22
管理
问题
[br] Why does the professor mention a hydrophone listening for underwater earthquakes?
Listen to part of a lecture in a meteorology class.
Professor: OK. It’s important to measure a hurricane’s intensity before it reaches land, because it can help save lives and avoid the enormous costs of an unnecessary evacuation. But the factors leading to a hurricane’s intensity like wind speed is very tricky to measure because they’re changing constantly. I’d like to know if anyone can tell me how we get information about the intensity of a hurricane that’s on the way. Jennifer?
Student 1: Well, don’t we... like.... fly planes into it?
Professor: Right. Planes that monitor hurricanes fly through the eye of a hurricane to measure the speed of the storm’s wind. But it’s very expensive and it’s also very risky.
Student 1: I understand the point about it being risky for the pilots with the high winds and lightning and everything. But urn... how can it be so expensive?
Professor: Well, you see, hurricane-monitoring planes are built to withstand strong winds. And they’re usually loaded with a lot of sophisticated equipment that will measure wind speed and other things. One plane costs about 100 million dollars, and its single flight costs like... 50 thousand dollars. What’s more, it can take as many as 10 flights to monitor a hurricane as it approaches land, From the readings of these direct measurements of hurricane force, we can determine whether to evacuate the area. But that’s an expensive approach. I mean, we can’t simply fly planes into every hurricane and cyclone.
Now a couple of researchers think there may be a better way to measure a hurricane’s intensity... uh... a much more cost-effective way. It has almost no risks and requires much lower tech equipment so this method is very promising. It’s a microphone... an underwater microphone called a "hydrophone." OK, so how it works is... urn... it receives acoustic waves underwater. By measuring the noise of a hurricane underwater, we can predict the speed of hurricane winds with an amazing precision. Do you have a question, John?
Student 2: Yes, how can we hear winds blowing over the water if the microphone, the hydrophone, is underwater?
Professor: Well, hurricanes don’t just blow over the water leaving it untouched, do they?
Student 2: Oh yeah. The water gets churned up.
Professor: Hurricanes chum up the waves like crazy. The roiling action of the wind actually turns the water into a bubble-filled froth. And all this action creates a unique rumbling sound under the water whose volume is a good indicator of the intensity of the storm... uh... the speed of the hurricane winds. Uh... hydrophones can be deployed hundreds of meters below the surface ahead of the hurricane’s path while conditions are still safe. Also, the total cost for such a deployment would be a small fraction of the cost of even a single flight into the storm.
Student 1:I wonder how they figured this out. I mean, how would it occur to anyone to put a microphone under water to measure the speed of the hurricane winds?
Professor: Well, this actually brings us back to something I’ve talked about in class before. It’s the... ah... value of combining scientific disciplines to deal with complex meteorological problems. In this case, the idea came to light when two researchers from different fields met a few years ago. One was Nicholas Makris, an expert of underwater acoustics, and the other was Kerry Emmanuel, a hurricane expert. So the research was triggered by their conversation. Emmanuel asked Makris, "Is it possible that underwater noise could be analyzed to determine the intensity of a hurricane?" Makris said, "yes, in theory at least."
It was a commonly known fact that wind speed has something to do with underwater noise. But it was not until Makris met Emmanuel that the idea occurred to him to use that relationship to measure hurricane winds. So Makris started looking for specific evidence to support the theory. He thought there may have been a situation where a hydrophone was deployed for some other purpose and unintentionally recorded hurricane noise. And he found it. In 1999, a hydrophone in the middle of the Atlantic, just under a kilometer below the surface was listening for underwater earthquakes when a hurricane passed over it. The hydrophone picked up a low rumbling sound, like the thundering sound, from the churned up water. And on the same day, a plane had flown into the hurricane and made direct wind speed measurement. When Makris compared the data, he found that there was almost a perfect relationship between the power of the wind and the power of the wind-generated noise. And there was less than 5 percent of error. This is about the same as the errors you get from direct measurements from airplane measurements.
选项
A、To point out that different types of hydrophones exist
B、To provide the validation of a new technique
C、To point out the fact the underwater earthquakes are hard to detect
D、To help explain how hydrophones work
答案
B
解析
组织结构题。线索词为教授所说:He thought there may have been a situation where a hydrophone was deployed for some other purpose and unintentionally recorded hurricane noise.And he found it .教授提及海底地震水听器是为了表明水听器还可被用于其他目的,即记录飓风的噪音(确认一种新技术)。A选项错误,因为原文所述的不是不同类型的水听器,而是水听器的不同功能。C选项错误,因为文中未提及海底地震是否难以探测。D选项错误,水听器的工作原理在文中确有提及,但与题干要求不符。教授提及海底地震水听器是为了表明水听器还可被用于其他目的,而不是为了解释水听器的工作原理。
转载请注明原文地址:https://tihaiku.com/zcyy/3329233.html
相关试题推荐
[img]2012q2/ct_etoefm_etoeflistz_0753_20124[/img][br]Basedonthislecture,wh
[img]2012q2/ct_etoefm_etoeflistz_0753_20124[/img][br]Whatdoestheprofessori
[img]2012q2/ct_etoefm_etoeflistz_0753_20124[/img][br]Accordingtotheprofesso
[img]2012q2/ct_etoefm_etoeflistz_0753_20124[/img][br]Whydodolphinsuseasig
[img]2012q2/ct_etoefm_etoeflistz_0746_20124[/img][br]Indicatewhethereachsen
[img]2012q2/ct_etoefm_etoeflistz_0746_20124[/img][br]Whatdoestheprofessori
[img]2012q2/ct_etoefm_etoeflistz_0733_20124[/img][br]Howistheinformationin
[img]2012q2/ct_etoefm_etoeflistz_0733_20124[/img][br]Whydoestheprofessorme
[img]2012q2/ct_etoefm_etoeflistz_0726_20124[/img][br]Howdoestheprofessorst
[img]2012q2/ct_etoefm_etoeflistz_0726_20124[/img][br]Whatdoestheprofessori
随机试题
有则广告想让读者相信,杜尔公司生产的汽车耐用性能极佳。该广告引用如下事实作为其根
RFID是一种接触式的识别技术。
阿托品是A.莨菪醇和消旋莨菪酸结合成的酯 B.莨菪醇和莨菪酸结合成的酯 C.
室内空气卫生学评价的微生物学指标有()A.结核杆菌 B.链球菌 C.大肠菌总
2010年,天津市全市生产总值突破9000亿元。据初步核算,并经国家统计局评估审
2012年4月湖北省武汉市江夏区大桥镇14岁的男学生姚小明,上语文课时不遵守课堂
有关风湿病病变性质的描述,哪项是正确的A.渗出性炎 B.变质性炎 C.化脓性
溶剂法分离麻黄碱和伪麻黄碱的原理是A.二者草酸盐溶解度的差别 B.二者硝酸盐溶
(2020年真题)下列属于出口退税形式的有()。A.零税率 B.不征不退
以下有关材料招标文件要求的说法,不正确的是( )。A.招标文件中的实质性要求和
最新回复
(
0
)