首页
登录
职称英语
[img]2018m9s/ct_etoefz_etoeflistz_201808_0056[/img] [br] What does the professor
[img]2018m9s/ct_etoefz_etoeflistz_201808_0056[/img] [br] What does the professor
游客
2024-01-03
53
管理
问题
[br] What does the professor imply about the relationship between the two researchers he mentions?
Listen to part of a lecture in a meteorology class.
Professor: OK. It’s important to measure a hurricane’s intensity before it reaches land, because it can help save lives and avoid the enormous costs of an unnecessary evacuation. But the factors leading to a hurricane’s intensity like wind speed is very tricky to measure because they’re changing constantly. I’d like to know if anyone can tell me how we get information about the intensity of a hurricane that’s on the way. Jennifer?
Student 1: Well, don’t we... like.... fly planes into it?
Professor: Right. Planes that monitor hurricanes fly through the eye of a hurricane to measure the speed of the storm’s wind. But it’s very expensive and it’s also very risky.
Student 1: I understand the point about it being risky for the pilots with the high winds and lightning and everything. But urn... how can it be so expensive?
Professor: Well, you see, hurricane-monitoring planes are built to withstand strong winds. And they’re usually loaded with a lot of sophisticated equipment that will measure wind speed and other things. One plane costs about 100 million dollars, and its single flight costs like... 50 thousand dollars. What’s more, it can take as many as 10 flights to monitor a hurricane as it approaches land, From the readings of these direct measurements of hurricane force, we can determine whether to evacuate the area. But that’s an expensive approach. I mean, we can’t simply fly planes into every hurricane and cyclone.
Now a couple of researchers think there may be a better way to measure a hurricane’s intensity... uh... a much more cost-effective way. It has almost no risks and requires much lower tech equipment so this method is very promising. It’s a microphone... an underwater microphone called a "hydrophone." OK, so how it works is... urn... it receives acoustic waves underwater. By measuring the noise of a hurricane underwater, we can predict the speed of hurricane winds with an amazing precision. Do you have a question, John?
Student 2: Yes, how can we hear winds blowing over the water if the microphone, the hydrophone, is underwater?
Professor: Well, hurricanes don’t just blow over the water leaving it untouched, do they?
Student 2: Oh yeah. The water gets churned up.
Professor: Hurricanes chum up the waves like crazy. The roiling action of the wind actually turns the water into a bubble-filled froth. And all this action creates a unique rumbling sound under the water whose volume is a good indicator of the intensity of the storm... uh... the speed of the hurricane winds. Uh... hydrophones can be deployed hundreds of meters below the surface ahead of the hurricane’s path while conditions are still safe. Also, the total cost for such a deployment would be a small fraction of the cost of even a single flight into the storm.
Student 1:I wonder how they figured this out. I mean, how would it occur to anyone to put a microphone under water to measure the speed of the hurricane winds?
Professor: Well, this actually brings us back to something I’ve talked about in class before. It’s the... ah... value of combining scientific disciplines to deal with complex meteorological problems. In this case, the idea came to light when two researchers from different fields met a few years ago. One was Nicholas Makris, an expert of underwater acoustics, and the other was Kerry Emmanuel, a hurricane expert. So the research was triggered by their conversation. Emmanuel asked Makris, "Is it possible that underwater noise could be analyzed to determine the intensity of a hurricane?" Makris said, "yes, in theory at least."
It was a commonly known fact that wind speed has something to do with underwater noise. But it was not until Makris met Emmanuel that the idea occurred to him to use that relationship to measure hurricane winds. So Makris started looking for specific evidence to support the theory. He thought there may have been a situation where a hydrophone was deployed for some other purpose and unintentionally recorded hurricane noise. And he found it. In 1999, a hydrophone in the middle of the Atlantic, just under a kilometer below the surface was listening for underwater earthquakes when a hurricane passed over it. The hydrophone picked up a low rumbling sound, like the thundering sound, from the churned up water. And on the same day, a plane had flown into the hurricane and made direct wind speed measurement. When Makris compared the data, he found that there was almost a perfect relationship between the power of the wind and the power of the wind-generated noise. And there was less than 5 percent of error. This is about the same as the errors you get from direct measurements from airplane measurements.
选项
A、It developed over many years of working in the similar field.
B、It led to the invention of an underwater microphone.
C、It will likely lead to other breakthroughs in meteorology.
D、It demonstrates the importance of interdisciplinary collaborations.
答案
D
解析
推论题。线索词为教授所说:It’s the…ah…value of combining scientific disciplines to deal with complex meteorological problems.In this case,the idea came to light when two researchers from different fields met a few vears ago.如原文所述,当两名来自不同领域的研究人员相遇时,水听器测量风速这个想法就应运而生。据此可推断,教授提及两人的关系是为了强调跨学科合作对于解决气象学难题的重要性。A选项与原文表述相悖,因为两人来自不同研究领域。B选项错误,以原文为据,水听器早已存在并用于海底地震监测,而非二人发明。C选项错误,文中未提及二人关系可能会促进其他重大突破的出现。
转载请注明原文地址:https://tihaiku.com/zcyy/3329232.html
相关试题推荐
[img]2012q1/ct_etoefm_etoeflistz_0917_20121[/img][br]Whydoestheprofessorsa
[img]2012q1/ct_etoefm_etoeflistz_0917_20121[/img][br]Howdoestheprofessorex
[img]2012q1/ct_etoefm_etoeflistz_0917_20121[/img][br]Whatisthetalkmainlya
[img]2012q1/ct_etoefm_etoeflistz_0842_20121[/img][br]Whatcanbeinferredabou
[img]2012q1/ct_etoefm_etoeflistz_0842_20121[/img][br]Whatdoesthemanimplya
[img]2012q1/ct_etoefm_etoeflistz_0842_20121[/img][br]Whyisthewomaninterest
[img]2012q1/ct_etoefm_etoeflistz_0842_20121[/img][br]Whydoesthewomanvisit
[audioFiles]audio_etoefz_055(20051)[/audioFiles]A、Hisalarmclockisbroken.B、
[audioFiles]audio_etoefz_055(20051)[/audioFiles]A、Sheisplanningtodropthec
[audioFiles]audio_etoefz_055(20051)[/audioFiles]A、Hohasnotbeentothenewre
随机试题
Ireallyappreciateyour(offer)______tohelpme.offering本题测试的是动词的惯用法。“appreci
TheWhiteHouseistheofficialresidenceofthePresidentoftheUnitedSt
某公司拟配置存储容量不少于9TB的磁盘阵列用于存储数据。假设只能购买每块存储容量
2岁小孩,双侧先天性髋关节脱位.最佳治疗方案可选A.牵拉复位 B.手术切开复位
患者,男,46岁。心胸阵作隐痛,疾走则发,胸闷气短,动则甚,心悸,倦怠无力,神疲
婴儿添加辅食的原则,错误的是A.每种辅食都应从少量开始 B.由稠到稀 C.从
各种运输方式内外部的各个方面的构成和联系,就是( )。 A.运输系统
(2017年真题)甲企业生产一种产品,每件产品消耗材料10千克。预计本期产量15
甲公司拥有一栋办公楼,成本为1200万元,预计使用寿命为20年,预计净残值为20
非霍奇金淋巴瘤化疗首选的方案是() A.MP方案 B.CHOP方案 C.M
最新回复
(
0
)