首页
登录
职称英语
What is the lecture mainly about? [br] In what ways are modern muon detectors di
What is the lecture mainly about? [br] In what ways are modern muon detectors di
游客
2024-01-02
20
管理
问题
What is the lecture mainly about? [br] In what ways are modern muon detectors different from muon detectors used 40 years ago? Choose 3 answers.
Listen to part of a lecture in an archeology class. (P =Professor, S = Student)
P: Talking about one popular myth in archeology, some people simply think excavation is digging the site until something valuable is found. Well, while there is an element of luck involved, we have an array of high tech devices to help us figure out where to put our efforts. You know, we can’t just dig up the site randomly looking for an ancient structure. There is one of the newer tools actually created by a different field of study. The machine relies on particle physics. Um… interdisciplinary I’d say. And it is called a muon detector, or counter. Muon is a charged elementary particle similar to electron. Okay, let me start over. On Earth, most naturally occurring muons are created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy. When these charged particles of cosmic rays collide with molecules in the upper atmosphere, they break up into smaller particles, muons. Traveling at the speed of light, muons can penetrate tens of meters into rocks and other matter on Earth’s surface. In fact, they can pass through solid matter, so they can transmit deep into the surface. Thus, this property of muon is perfect for archeologists to take advantage of. Let me explain. Over the course of several months, one detector can build up a picture showing the shadows of structures they’re studying—like the Mayan pyramid in Central America, for example. Wecre interested in finding out if there are buried chambers or other rooms inside. Well, a muon detector can track a great number of muons passing through the less dense space inside the pyramid. Yes, you have your hand up?
S: I don’t think I get how this device works exactly.
P: Okay, well, when muons pass through… uh… say… stone walls of a pyramid, dense material, they lose energy. So, in the case of empty space, more muons can pass through because they lose less energy. The muon detector can identify the area by measuring the amount of muons in each place. We can see darker colors in empty spaces, so we wind up with a sort of… picture of the site and its internal structure.
S: Picture?
P: Yes, in the same way that CT scans produce a 3-D picture of your body using X-rays. It literally is like tomography in the medical sense.
S: Okay, so if darker areas show up inside the pyramid, we assume it’s an empty space with more muons.
P: You got it. This technology enables us to see what’s inside of the structure before we dig up the site. So, now we know exactly where to excavate, and we can minimize the damage. You know, even a little damage could result in losing crucial information forever. Now, it was when archeologists began to use muon detectors that they improved. Four decades ago, a physicist buried these detectors in the ground, surrounding the Egyptian pyramids. He was looking for buried chambers. However, he saw no surprises in that experiment. But he did demonstrate that the technique worked. One of the problems was that the machine he used was about the size of a water heater. It was so big that many archeologists doubted its practicality. Then, there was another issue of range. With the detector used in that time, we could only scan from muon directly above it but not from the sides. So, it actually had to be placed underneath the pyramid first, so we could look up into the inside of the ancient structure. It would be nice, for instance, to have a system that didn’t take six months to produce an image. I believe that’s way better than the year it took for this physicist’s study to get the results, but still… Well, there’s good reason to believe that with better equipment, we’re going to use muons in much more diverse manners. Muon detectors can also be used in other areas of science. For instance, to scope our nuclear waste sites or even look for the underground warning site in a volcanic eruption. Moreover, there are plenty of archeologists willing to try this device.
选项
A、They are more economical.
B、They use less energy.
C、They are not as large.
D、They take less time to produce an image.
E、They can scan in more than one direction.
答案
C,D,E
解析
题目询问当代的介子探测器与40年前的有哪些不同。讲座提到,40年前的介子探测器有三个缺点:一、太大;二、只能扫描正上方;三、需要一年时间才能成像。换句话说,当代的介子探测器与40年前的有二三个不同点:一、没有那么大,对应C项;二、不仅只能扫描一个方向,对应E项;三、只要几个月就能生成图像,对应D项。A项“它们更节约成本”和B项“它们使用更少的能源”在讲座中都没有被提及。
转载请注明原文地址:https://tihaiku.com/zcyy/3327582.html
相关试题推荐
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
"SpeechandWriting"Oneofthebasicassumptionsofmodernlinguisticsisth
[img]2018m9s/ct_etoefz_etoeflistz_201808_0003[/img][br]Whatisthelecturemai
[img]2018m9s/ct_etoefz_etoeflistz_201808_0002[/img][br]Whatisthelecturemai
[img]2018m9s/ct_etoefz_etoeflistz_201808_0018[/img][br]Whatisthelecturemai
随机试题
(1)Theyear2010beganwithaherdofmanufacturerschasingAmazon’sKindle.
Work-lifeBalance:FlexAppealGeorginaBlizzardand
Onecenturyago,intheyearbeforeFreudandJung’sfamousvisithere,Amer
JeffBezosTakingthelongviewA)JeffBezos,thefoundera
以下关于沥青混合料的的碾压,正确的有( )。A.纵向接缝应是热接缝 B.初压
继电保护通过断路器实现故障点最小范围的隔离(切除),包括实现停电范围最小,并可以
WhyHaveFormalDocuments?Finally,writi
A.增加Cl通道开放的时间 B.加强大脑皮层的抑制过程 C.激动GABA受体
Ⅱ型超敏反应A.由IgG或IgM介导 B.属于迟发型超敏反应 C.与NK细胞
某建筑公司和材料供应公司签订合同,约定了违约金,并交付定金,因为供应公司违约未能
最新回复
(
0
)