首页
登录
职称英语
Scientists studying the activity of the living brain with widely used new im
Scientists studying the activity of the living brain with widely used new im
游客
2023-12-27
26
管理
问题
Scientists studying the activity of the living brain with widely used new imaging techniques have been missing some of the earliest steps in brain activity because those changes are subtle and are masked by reactions that happen seconds later, Israeli scientists say.
The imaging techniques — positron emission tomography scanning and magnetic resonance imaging, known as PET and functional M. R. I. scans — are used prominently in studies of brain activity. The most active brain areas appear to light up on the scans as specific tasks are performed. The two techniques do not measure nerve-cell activity directly; they measure the extra flow of blood that surges to the most active brain areas.
Researchers at the Weizmann Institute of Science in Rehovot, Israel, have monitored these changes in blood flow in anesthetized cats by removing parts of the skull and observing how the nerve cells in activated regions fuel their activities by rapidly removing oxygen from nearby red blood cells.
This rapid uptake of oxygen, made evident by visible changes in the color of the red cells, proves that early oxygen transfer gives these neurons the energy to do their work, the researchers said.
They also found that subtle changes in blood flow began significantly earlier than was detected by PET and functional M. R. I. scans, which lack sufficient resolution and do not form their images quickly enough to follow such rapid changes. Dr. Amiram Grinvald published the findings in the Journal Science.
"The initial event is very localized and will be missed if you don’t look for it soon enough and use the highest possible resolution," Dr. Grinvald said. "Now people are beginning to use our results with other imaging methods."
Working on the exposed brain lets researchers follow electrical activity and the accompanying blood flow in greater detail than is possible by using indirect imaging methods that track neural activity through the skull. However, opportunities for open-skull studies of humans are limited to some kinds of neurosurgery, and researchers must mostly rely on PET and functional M. R. I. images for studies linking behavior with specific brain activity.
By directly observing exposed cat brains and in similar work with a few human cases, Dr. Grinvald and his associates have been able to observe the first evidence of electrical activity and other changes in brain cells after a light has been seen or a limb moved.
The newest research showed that it took three seconds or more after an event for the flow of blood to increase to an area of the brain dealing with a stimulus. That is the blood-flow increase usually pictured in brain-function studies with PET or functional M. R. I techniques, the Israeli researchers said. However, the initial reaction observed in the Weizmann research by directly imaging the exposed brain — the direct transfer of oxygen from blood cells to neurons — occurred in the first-tenth of a second and was lost to conventional imaging, they said.
The later increase in blood flow to the area, Dr. Grinvald said, was obviously an attempt by the body to supply more oxygen for brain activity. But the increase in blood was so abundant that it covered an area much larger than the region directly involved in the activity being studied, masking some of the subtle changes, he said.
The body’s reaction, the researchers said in the paper, was like "watering the entire garden for the sake of one thirsty flower."
Dr. Kamil Ugurbil, said that the Israeli research provided clues that allowed the use of functional M. R. I. scans to picture earlier events in the activity of brain cells.
"Dr. Grinvald’s observations are very important, and they have significant implications for functional imaging with high resolution," Dr. Ugurbil said in an interview. "We have actually been able to look at the early changes with magnetic resonance imaging, but you need to use higher magnetic fields to see them clearly because they are small effects."
By timing their images more carefully and by using stronger magnetic fields than normal, he said, researchers have used Dr. Grinvald’s findings to study early neuronal responses to stimuli at smaller, more specific sites in the brain. [br] The research done by Israeli researchers shows that the initial reaction — the direct transfer of oxygen from blood cells to neurons — ______ .
选项
A、occurred in the tenth of a second
B、occurred after the first-tenth of a second
C、could not be observed by conventional imaging
D、could be observed by conventional imaging
答案
C
解析
细节题型见第九段最后一句:然而,在Weizmann研究中通过对暴露的大脑直接成像所观察到的初始反应——直接将氧从血液细胞中输送到神经细胞中——发生在最初的十分之一秒,而这是常规成像会错过的。因此C为答案。
转载请注明原文地址:https://tihaiku.com/zcyy/3311104.html
相关试题推荐
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[br][
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[br][
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[br][
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[br][
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[br][
Acitythatactsmorelikealivingorganismissaidtobeasmartcity.[origin
Rockclimbingisanactivityinwhichparticipantsclimbup,downoracross
Rockclimbingisanactivityinwhichparticipantsclimbup,downoracross
Rockclimbingisanactivityinwhichparticipantsclimbup,downoracross
Rockclimbingisanactivityinwhichparticipantsclimbup,downoracross
随机试题
RichNorth,HungrySouthAfewyearsago,th
黄河黄河是中华文明和中华民族的摇篮,所以又被称作“母亲河”。黄河长达5464公里,是中国第二大
唐代的染织工艺十分发达,更追求华丽的色彩效果,以织锦最著名,称为()。A.蜀锦
属于均相酶免疫测定的方法是A.酶联免疫化学发光测定 B.dot-ELISA
关于三维超声成像的原理下列正确的是A.实时三维成像是在二维成像基础上,用计算机重
A.第7胸椎棘突 B.第5颈椎棘突 C.第6颈椎棘突 D.第4腰椎棘突
A.量多,粗大,圆而均匀,充满胞质,鲜橘红色B.量多,细小,分布均匀,布满胞质,
共用题干 第二篇Milosevic'sDeathFormerYugosla
反映企业短期内可变现资产偿还短期内到期债务能力的指标是()。A.速动比率 B
2020年2月,中国公民孙某从其任职的公司取得限制性股票50000股,在获得限制
最新回复
(
0
)