首页
登录
职称英语
Scientists studying the activity of the living brain with widely used new im
Scientists studying the activity of the living brain with widely used new im
游客
2023-12-27
48
管理
问题
Scientists studying the activity of the living brain with widely used new imaging techniques have been missing some of the earliest steps in brain activity because those changes are subtle and are masked by reactions that happen seconds later, Israeli scientists say.
The imaging techniques — positron emission tomography scanning and magnetic resonance imaging, known as PET and functional M. R. I. scans — are used prominently in studies of brain activity. The most active brain areas appear to light up on the scans as specific tasks are performed. The two techniques do not measure nerve-cell activity directly; they measure the extra flow of blood that surges to the most active brain areas.
Researchers at the Weizmann Institute of Science in Rehovot, Israel, have monitored these changes in blood flow in anesthetized cats by removing parts of the skull and observing how the nerve cells in activated regions fuel their activities by rapidly removing oxygen from nearby red blood cells.
This rapid uptake of oxygen, made evident by visible changes in the color of the red cells, proves that early oxygen transfer gives these neurons the energy to do their work, the researchers said.
They also found that subtle changes in blood flow began significantly earlier than was detected by PET and functional M. R. I. scans, which lack sufficient
resolution
and do not form their images quickly enough to follow such rapid changes. Dr. Amiram Grinvald published the findings in the Journal Science.
"The initial event is very localized and will be missed if you don’t look for it soon enough and use the highest possible resolution," Dr. Grinvald said. " Now people are beginning to use our results with other imaging methods. "
Working on the exposed brain lets researchers follow electrical activity and the accompanying blood flow in greater detail than is possible by using indirect imaging methods that track neural activity through the skull. However, opportunities for open-skull studies of humans are limited to some kinds of neurosurgery, and researchers must mostly rely on PET and functional M. R. I. images for studies linking behavior with specific brain activity.
By directly observing exposed cat brains and in similar work with a few human cases, Dr. Grinvald and his associates have been able to observe the first evidence of electrical activity and other changes in brain cells after a light has been seen or a limb moved.
The newest research showed that it took three seconds or more after an event for the flow of blood to increase to an area of the brain dealing with a stimulus. That is the blood-flow increase usually pictured in brain-function studies with PET or functional M. R. I techniques, the Israeli researchers said. However, the initial reaction observed in the Weizmann research by directly imaging the exposed brain — the direct transfer of oxygen from blood cells to neurons — occurred in the first-tenth of a second and was lost to conventional imaging, they said.
The later increase in blood flow to the area, Dr. Grinvald said, was obviously an attempt by the body to supply more oxygen for brain activity. But the increase in blood was so abundant that it covered an area much larger than the region directly involved in the activity being studied, masking some of the subtle changes, he said.
The body’s reaction, the researchers said in the paper, was like "watering the entire garden for the sake of one thirsty flower. "
Dr. Kamil Ugurbil, said that the Israeli research provided clues that allowed the use of functional M. R. I. scans to picture earlier events in the activity of brain cells.
"Dr. Grinvald’s observations are very important, and they have significant implications for functional imaging with high resolution," Dr. Ugurbil said in an interview. " We have actually been able to look at the early changes with magnetic resonance imaging, but you need to use higher magnetic fields to see them clearly because they are small effects. "
By timing their images more carefully and by using stronger magnetic fields than normal, he said, researchers have used Dr. Grinvald’s findings to study early neuronal responses to stimuli at smaller, more specific sites in the brain. [br] What’s the advantage of studying exposed brain?
选项
A、It can help capture the earliest events of the brain.
B、It can help researchers use the highest possible resolution to observe the events.
C、It can help researchers find the indirect imaging methods that track neural activity through the skull.
D、It lets researchers study the electrical activity and the blood flow in detail.
答案
D
解析
细节题型见第七段第一句:在打开的大脑上工作(观察)比用通过头骨、间接的成像方式来追踪神经活动能使研究者们更好地观察电流的活动及伴随的大量血流的活动;因此答案为D。
转载请注明原文地址:https://tihaiku.com/zcyy/3310338.html
相关试题推荐
Whatdoscientistssayaboutantibiotics?A、Antibioticsarepowerful.B、Antibioti
Whatisthewidelyacceptedideaaboutscreentime?A、Itcandamageyoungpeople’
Scientistsbelievea2.7percentdropingreenhousegasemissionseachyearfor
Swedishscientistscenteredtheresearchon85peoplewhoownbordercolliesor
Anyformofaerobicactivityprovideshealthbenefits.A、正确B、错误A原文说:Forthose…a
Withtheadvancementofscience,scientistsareabletofindoutthepathsofst
Untilrecently,scientistsknewlittleaboutlifeinthedeepsea,norhadt
Untilrecently,scientistsknewlittleaboutlifeinthedeepsea,norhadth
Untilrecently,scientistsknewlittleaboutlifeinthedeepsea,norhadt
Thegeneticstructureofanylivingorganismiscomplex,andGMcroptestsfocus
随机试题
剪纸是中国民间艺术的一种独特形式,已有2,000多年历史。剪纸很可能源于汉代,继纸张发明之后。从此,它在中国的许多地方得到了普及。剪纸用的材料和工具很简单
一般而言,线性时不变网络状态方程的解析解是能够获得的,而对于线性时变网络或非
建筑施工企业安全生产管理机构应当按《建筑施工企业安全生产管理机构及专职安全生产管
某药厂生产一批阿司匹林片共计900盒,批号150201,有效期2年。 药典规定
马柯维茨的现代投资组合理论认为,只要两种资产收益率的相关系数不为(),分散投资
溶血性黄疸时尿三胆改变的特征是A.尿胆红素阳性,尿胆原阴性,尿胆素阳性B.尿胆红
各种运输方式内外部的各个方面的构成和联系,就是( )。 A.运输系统
下列说法中,正确的是( )。A.大赦既赦其刑,又赦其罪B.特赦只赦其刑
根据《证券公司证券资产管理业务试行办法》的规定,在集合资产管理计划中,客户主要享
A.氮芥类 B.孕激素 C.雄激素 D.沙利度胺 E.甲氨蝶呤(致畸药物
最新回复
(
0
)