Eight times within the past million years, something in the Earth’s climatic

游客2023-12-09  13

问题    Eight times within the past million years, something in the Earth’s climatic equation has changed, allowing snow in the mountains and the northern latitudes to accumulate from one season to the next instead of melting away each time. The enormous ice sheets resulting from this continual buildup lasted tens of thousands of years until the end of each particular glacial cycle brought a warmer climate. Scientists speculated that these glacial cycles were ultimately driven by astronomical factors: slow cyclic changes in the eccentricity of the Earth’s orbit and in the tilt and orientation of its spin axis. But up until around 30 years ago, the lack of an independent record of ice age timing made the hypothesis untestable.
    Then in the early 1950s Emiliani produced the first complete record of the waxings and wanings of past glaciations. It came from a seemingly odd place. The seafloor single-cell marine organisms called "foraminifera" house themselves in shells made from calcium carbonate. When the foraminifera die, sink to the bottom, and become part of seafloor sediments, the carbonate  of their shells preserves certain characteristics of the seawater they inhabited. In particular, the ratio of a heavy isotope of oxygen (oxygen-18) to ordinary oxygen (oxygen-16) in the carbonate preserves the ratio of the two oxygens in water molecules.
   It is now understood that the ratio of oxygen isotopes in seawater closely reflects the proportion of the world’s water locked up in glaciers and ice sheets. A kind of meteorological distillation accounts for the link. Water molecules containing the heavier isotope tend to condense and fall as precipitation slightly sooner than molecules containing the lighter isotope. Hence, as water vapor evaporated from warm oceans moves away from its source, its oxygen-18 returns more quickly to the oceans than does its oxygen-16. What falls as snow on distant ice sheets and mountain glaciers is relatively depleted of oxygen-18. As the oxygen-18-poor ice builds up the oceans become relatively enriched in the isotope. The larger the ice sheets grow, the higher the proportion of oxygen-I 8 becomes in seawater—and hence in the sediments.
   Analyzing cores drilled from seafloor sediments, Emiliani found that the isotopic ratio rose and fell in rough accord with the Earth’s astronomical cycles. Since that pioneering observation, oxygen-isotope measurements have been made on hundreds of cores. A chronology for the combined record enables scientists to show that the record contains the very same periodicities as the orbital processes. Over the past 800,000 years, the global ice volume has peaked every 100,000 years, matching the period of the orbital eccentricity variation. In addition, "wrinkles" superposed on each cycle-small-decrease or surge in ice volume have come at intervals of roughly 23,000 and 41, 000 years, in keeping with the precession and tilt frequencies of the Earth’s spin axis. [br] Which of the following did the scientists do who first constructed a coherent, continuous picture of past variations in marine-sediment isotope ratios according to the passage?

选项 A、Relied primarily on the data obtained from the analysis of Emiliani’s core samples.
B、Combined data derived from the analysis of many different core samples.
C、Matched the data obtained by geologists with that provided by astronomers.
D、Evaluated the isotope-ratio data obtained in several areas in order to eliminate all but the most reliable data.

答案 B

解析
转载请注明原文地址:https://tihaiku.com/zcyy/3259485.html
最新回复(0)