首页
登录
职称英语
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitti
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitti
游客
2023-11-26
32
管理
问题
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go, an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. To date, no computer has been able to achieve a skill level beyond that of the casual player.
The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguing, intuition.
Along with intuition, pattern recognition is a large part of the game. While computers are good at crunching numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess game and see if there’s some major issue, " he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300, 000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By midgame, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kierulf, who wrote a program called SmartGo.
In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30, 000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourage programmers to advance basic work in artificial intelligence.
For that reason, Fotland said, "writing a strong Go program will teach us more about making computers think like people than writing a strong chess program." [br] Which of the following DOES NOT contribute to the complexity of programming a computer to play Go?
选项
A、Playing Go involves decision-making.
B、Playing Go involves pattern-matching.
C、The limitation of computer’s processing speed.
D、There exist too many possibilities in each move.
答案
A
解析
以下哪一要素没有构成围棋程序编写的难度?选项A错在虽然人工智能涉及了决策制订,但文中并没有提到是这一点使围棋程序编写尤其困难,以常识而言,象棋程序中也涉及决策制订。而其他选项在下文都有特别提到,用以强调围棋程序编写之难。
转载请注明原文地址:https://tihaiku.com/zcyy/3221478.html
相关试题推荐
(1)Whatabeautifulcity.Lightsblinkingserenely,highwaysandriversflow
(1)Whatabeautifulcity.Lightsblinkingserenely,highwaysandriversflow
PASSAGETHREE[br]WhydoestheauthormentionmathematicianJohnNashinthebe
EarlyinthefilmABeautifulMind,themathematicianJohnNashisseensitti
EarlyinthefilmABeautifulMind,themathematicianJohnNashisseensitti
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
随机试题
OwningacarhaschangedfromadreamformostChineseintoareality,andi
Weoftenhearthe【B1】______,"Everybodytalksaboutweather,butnobodydoes
面向对象分析的主要任务不包括()A.构建分析模型,以描述用户的需求 B.构
申请发明或者实用新型专利应当提交的文件包括()。A.专利申请书 B.请求
一项工程甲队单独完成需要40天,乙队单独完成需要24天,实际工作中甲乙两队合作1
下列不属于银行咨询业务当中信息咨询业务的主要方式的是( )。A.定期或不定期提供
基础心理学是研究()。 (A)正常成人心理现象的心理学基础学科 (B
在人力资源避免未来出现劳动力短缺的方法中,属于见效速度慢、可撤回程度中等的是(
某工程承包公司于2013年12月发生工程保修费1万元。根据企业会计准则及其相关规
潜伏期平均约需A.12小时 B.16小时 C.6小时 D.10小时 E.
最新回复
(
0
)