首页
登录
职称英语
Passage Three (1) "We’ve been wondering what planet we’re first going
Passage Three (1) "We’ve been wondering what planet we’re first going
游客
2023-11-24
18
管理
问题
Passage Three
(1) "We’ve been wondering what planet we’re first going to look for life on. Now we know. " Rory Barnes, of the University of Washington, puts it nicely. Proxima Centauri, the star closest to the sun, has a planet. That planet weighs not much more than Earth and is therefore presumably rocky. And it orbits within its parent star’s habitable zone—meaning that, given an atmosphere, its surface temperature is likely to permit liquid water.
(2) A prize discovery, then, for astrobiologists such as Dr. Barnes. The discoverers themselves are a transnational team of astronomers who have been using telescopes at the European Southern Observatory (ESO) in the Atacama desert, in Chile, for planet-hunting. They have inferred its existence from its effect on its parent star’s light, and their paper in Nature describes what they have been able to deduce about it.
(3) Proxima Centauri b, as it is known, probably weighs between 1.3 and three times as much as Earth and orbits its parent star once every 11 days. This puts its distance from Proxima Centauri itself at 7m kilometres, which is less than a twentieth of the distance between Earth and the sun. It can remain temperate in such a close orbit only because Proxima is a red dwarf, and thus much cooler than the sun. It is not the only Earth-sized extrasolar planet known to orbit in a star’s habitable zone. There are about a dozen others. But it is the closest to Earth—so close, at four light-years, that it is merely outrageous, not utterly absurd, to believe a spaceship (admittedly a tiny one) might be sent to visit it. Before this happens, though, it will be subjected to intense scrutiny from Earth itself.
(4) That scrutiny will probably be led by ESO. The data which led to Proxima Centauri b’s discovery came from the observatory’s 3.6 metre telescope at La Silla, in Chile. But ESO is also building a much bigger device, the 39-metre European Extremely Large Telescope (EELT), at another site in Chile. Since the late 2000s Markus Kasper of ESO has led a team which is designing a specialised planet-spotting instrument, the Exoplanet Imaging Camera and Spectrograph (EPICS), to fit on this telescope. Dr. Kasper’s camera has a price tag of 50m ( $ 56m), and there have always been questions about whether it is worth the money. But EPICS stands a better chance of producing actual pictures of Proxima Centauri b, and being able to analyse its atmosphere, than any other instrument in the world (or off it). Its future can now scarcely be in doubt.
(5) The problem for astronomers trying to catch a glimpse of Proxima Centauri b is that, though close to the Earth by interstellar standards, it is closer to its parent star by more or less every other standard short of that of walking down the road to the chemist. Seen from Earth, star and planet are 35 thousandths of an arc second apart (an arc second is a 3,600th of a degree). Producing a picture that separates the two objects thus requires a telescope with a resolution good enough to distinguish between the left and right headlights of an oncoming car in Denver from the distance of Berlin.
(6) Things get worse. Dim as it is, Proxima Centauriis still more than 10m times brighter than its planet is expected to be. It is as though one of those headlights in Denver was actually the open door to a furnace, while the other was a tea light. This is what makes the E-ELT and EPICS crucial. EPICS contains a coronagraph—a tiny shield that blocks out a star’s light so that adjacent planets can be seen. Unfortunately, a coronagraph reduces a telescope’s resolution, meaning you need an even bigger one to see the target in the first place. To observe Proxima Centauri b using a coronagraph, and doing so in the infrared wavelengths that are likely to provide the best information about its atmosphere, you need a telescope at least 20 metres across; 30 metres would be better.
(7) The exciting thing about the planet’s spectrum, however it is measured, is that it might reveal the water content and chemical composition of Proxima Centauri b’s atmosphere, if it has one. And that might, in turn, give a clue as to whether it harbours life. Life on Earth leaves a sign of its existence in the atmosphere, in the form of oxygen. This is produced by plants and it is such a reactive chemical that if their photosynthesis stopped it would disappear rapidly from the air. Free oxygen in Proxima Centauri b’s atmosphere would therefore get a lot of people excited—but possibly without justification, for there are ways to put oxygen into atmospheres abiotically. A stronger indicator of life would be finding both oxygen and molecules associated with biology that cannot long persist in its presence, and must thus be produced continuously.
(8) Another way to look for life on Proxima Centauri b would be to search for radio signals. Life in general does not generate radiation at radio frequencies. But intelligent life does—at least it does on Earth. And that Earth-bound life also puts a tiny bit of effort into looking for such emissions from elsewhere, an endeavour known as the search for extraterrestrial intelligence, or SETI. There have been SETI studies of Proxima Centauri in past decades, but they have not been particularly sensitive.
(9) That there is intelligent life in the nearest planetary system to Earth’s is surely the longest of shots. And despite its nice-sounding location in the "habitable zone" , the presence of any sort of life on Proxima Centauri b is far from a foregone conclusion. For one thing, there are doubts about how easy it is for planets around red dwarfs to develop and retain atmospheres. Though such stars are cool for most of their existences, in their early years they burn bright. A planet close enough to one to stay warm in later life might have seen its atmosphere burned off in the star’s brief blazing youth. Even if it avoids this problem, it will still be whipped by the star’s magnetic field and lashed by its flares. Though they are dim, red dwarfs are given to all sorts of eruptive activity and pump out X-rays at a prodigious rate. These are both things which might make an atmosphere hard to hold on to and life itself a bit tricky. [br] Which category of writing does the passage belong to?
选项
A、Narration.
B、Argumentation.
C、Description.
D、Exposition.
答案
D
解析
体裁题。解答本题需综合全文信息。文章开篇提到了观测家们发现一颗与地球条件较为相似,且有可能存在大气和液态水的行星,随后探讨了进一步观测这颗行星的条件和局限等,并介绍了验证行星上是否存在生命的两个可能的方法。虽然在最后一段中作者表达了对这颗行星上存在生命的质疑,但是整篇文章主要还是在进行说明和介绍,因此其体裁应属于说明文,故[D]为正确答案。作者虽然在文末稍有观点表达,但是总体上并没有进行议论,更没有进行叙述和描写,故排除[A]、[B]和[C]三项。
转载请注明原文地址:https://tihaiku.com/zcyy/3215059.html
相关试题推荐
PASSAGEFIVEIndirecttaxesanddirecttaxes.第3段第1句明确指出,任何税制基本上都可以分为直接税和间接税,题目中的m
PASSAGEFOUR[br]WhatisagooddanceaccordingtoGalili’sunderstandingofda
PASSAGETHREE[br]WhydidGooglebidforsomeofNortel’spatents?Toshieldits
PASSAGETWOContent.第4段中作者讲述了自己角色转换的过程以及对此的感受,从倒数第2句的awondrousbeginning(一个奇妙的开头
PASSAGEONE[br]WhatcanbeinferredfromradicalIslamicpartiesinlocalelec
PASSAGETHREE[br]WhatisAlbertHoffman’sdiscovery?Howtomakesyntheticergo
PASSAGETHREE[br]WhatwastheappearanceofBEATLESregardedas?Anoutstanding
PASSAGETHREE[br]Whydidalotofpeoplelosejobswhileworkerswithjobsonl
PASSAGETHREE[br]WhatmainlyaccountedfortheunemploymentinSeptember2005?
PASSAGETHREE[br]Whatdoes"atrioofcrises"(thesecondparagraph)mean?Crises
随机试题
TheyearthecolonizationofAustraliastartedisA、1768.B、1778.C、1788D、1798C
Inthe1920sAmericaenjoyedwhatwastobecomeknownas"anAgeofExcess".
[img]2018m9s/ct_etoefz_etoeflistz_201808_0009[/img][br]Accordingtotheprofes
A.制霉菌素B.克霉唑C.灰黄霉素D.酮康唑E.两性霉素B外用无效,口服治疗体癣
(1)卫生机关犯愁,增加巡逻人员,提高罚金,均收效其微 ?(2)每扔一次垃圾,
防止病邪侵害属于A.因时制宜 B.未病先防 C.因人制宜 D.因地制宜
40岁,男性。反复发作腰痛伴右下肢放射痛,与劳累有关,咳嗽、用力排便时可加重疼
孙中山在《民报》发刊词中将同盟会纲领概括为( )。A.“民族”、“民权”、“民
下列关于房地产市场营销的概念,应注意的几点是()。A:房地产市场营销的出发点是人
根据《建设工程施工专业分包合同(示范文本)》,关于专业分包的说法,正确的是(
最新回复
(
0
)