首页
登录
职称英语
Networked Automobile I’m driving through eastern Fra
Networked Automobile I’m driving through eastern Fra
游客
2023-09-05
35
管理
问题
Networked Automobile
I’m driving through eastern France, the blip-blip of the lane markers running backward through my peripheral (边缘的) vision at about 90mph. I check the mirrors: nothing there. Pretending to doze off, I let the car drift gently to the left. Just as it begins to change its direction towards the dotted line, the left side of my seat vibrates, activated by an infrared (红外线的) sensor looking at the road paint. I can assure you that the buzzing seat would have jolted (摇晃) me back to the job at hand. The car I’m driving is a prototype from the French automaker Peugeot Citroen, but a showroom-ready copy isn’t many months away.
Flash back five months: I’m at a test track at the base of Mount Fuji in Japan, in a Lexus fitted with a pre-crash safety system. I drive down the track at about 40mph toward a rubber post. Instinct and education make it hard to keep my foot off the brake, but a group of earnest engineers insist that I aim their $70,000 sedan straight for the post. At the last fraction of a second, when the car’s radar sensors and microprocessors have determined that the idiot at the wheel really isn’t going to steer around the obstacle, the safety system shoots into action. Seatbelt pretensioners cinch up (系紧), and the front and rear suspension dampers stiffen. As soon as I touch the brake pedal — better late than never — the car’s brake-assist tugs them on at max effort. It isn’t enough to avoid the crash, but the impact speed is about half what it would have been without the new system.
The next generation of environment-sensing cars will use more than just radar and infrared sensors to watch for signs of trouble. Video cameras will look for stoplights that have turned red and for children who are running toward the road. Distance-sensing lasers will check for vehicles in the driver’s blind spot and the passing lane. These sensors won’t do anything that a vigilant (警醒的) driver can’t already do, but what if they could? What if your car could sense road conditions and traffic problems that are out of your sight? That’s coming too.
The next giant leap in sensing will be radio-networking that enables cars to exchange information. "Communication (between cars) will be like an additional sensor," says Ralf Herrtwich, director of vehicle IT research at DaimlerChrysler Car-to-car communication will ensure that your automobiles ahead. And this extra "sensor" will have almost unlimited range, because information can be instantaneously relayed from one vehicle to the next, to the next, and so on.
No one doubts the extent of information-gathering and communication features that will be built into the networked cars of the future. Some of these features will merely assist the driver by, for example, pointing out a patch of black ice around the next bend. But what about the driver who fails to act on the warning? Should his car be empowered to "take the wheel"? Some automotive experts foresee a day when our cars will be so well-informed that we’ll be better off leaving some of the driving to them.
Time for another demonstration. It’s Berlin, and I’m in a Smart car, DaimlerChrysler’s tiny two-seater that has become a familiar in Europe’s cramped city streets. But this Smart is different: it’s smart. On the dashboard, a flashing display warns me of an accident two streets away, and the navigation system suggests a detour (绕道). My car, outfitted with a GPS position finder and an off-the-shelf wireless local area network (WLAN) communication system, was informed by another car carrying the same gear.
If knowledge is power, then the intellectual-horsepower rating of tomorrow’s vehicles is going to be high. Say just one car’s stability-control system is activated at an unusually slow speed on a highway off-ramp (驶出坡道)- It will send out a slippery-road warning. All WLAN-equipped cars in the vicinity then get the message, but they will warn their drivers only if they are headed for the same off-ramp.
The system will also provide traffic information on a need-to-know basis. Imagine there is a truck unloading in the next street on your route. It would never make the radio reports, but you could be trapped fuming for 10 minutes. WLAN — "traffic radar", as Herrtwich puts it — will let you know and reroute you. What is really new here is the way traffic will behave almost biologically, like a swarm of bees, a self-educating network. This is a killer apparatus, because it doesn’t require expensive infrastructure. No traffic-control center or information exchange. No need for roadside beacons (指向标) that the authorities would have to install. Instead cars will seamlessly (无线地) set up special networks, passing information from car to car.
Virtually all of the necessary hardware is already on the shelf at companies such as Bosch, Delphi and Samsung. What is needed now is the software to tie everything together: sensors, wireless radio networks and GPS navigation systems. Together these technologies create a system that provides immediate warnings of delays, accidents, temporary speed restrictions and road conditions — the everyday hazards that lie in wait just around the corner. And because the system knows exactly where each driver is, it won’t drown drivers in a running commentary about what is happening on the other side of town (unless the other side of town is the destination they have programmed into their navigations systems).
Of course, the system will not work well if there aren’t enough vehicles outfitted with the gear. The question is how to reach critical mass. Fortunately, WLAN networks are good for more than just traffic radar; they are also useful for downloading entertainment. "Ten years from now, we are talking about a radically changed way of listening to music, watching TV and videos," Herrtwich says. Once WLAN is adopted for in-car entertainment, the technology could also be used for road-safety and traffic-networking functions.
But don’t hold your breath. Technical standards are still a few years away — Herrtwich predicts 2008. If the first networked cars roll out in 2010, such features will not be standard for at least another decade. [br] To establish the WLAN system,______to link all the necessary hardware together is still not available.
选项
答案
the software
解析
上段说建立WLAN系统不需要昂贵的基础建设,本段讲的是建设该系统所需要的东西。首句说硬件都是现成的,第二句说还需要软件把所有硬件联系起来(the software to tie everything together),故答案为the software。
转载请注明原文地址:https://tihaiku.com/zcyy/2988364.html
相关试题推荐
AscivilwarseruptedthroughouttheRomanRepublicinthe1stcenturyB.C.,
ThroughoutGeorgeBush’spresidency,thefederalgovernmenthasrefusedtosu
ThroughoutGeorgeBush’spresidency,thefederalgovernmenthasrefusedtosu
Thisportraitofself-destructionistoldthroughthecontrastoftwosingingsi
Imusthave______fortenminutesbeforethetelephoneoperatorputmethrough.
Itisthroughlearningthattheindividual________manyhabitualwaysofreachi
ProfessorWutraveledandlecturedthroughoutthecountryto________womeneduc
Iwanderedthroughthecool______oftheforesttrees.A、shadowB、darknessC、fre
Inmyopinion,youcanwidenthe______ofthisimprovementthroughyouractivep
Thepatientisinacriticalstate.Hedoesn’t________pullingthroughthistim
随机试题
Theauthorofthepassagealludestothewell-establishednatureoftheconcept
Scientistshavelongbeeninterestedinhowthedeafprocesssignedlanguag
《规划》提出要实现金融科技应用先进可控、金融科技支撑不断完善、金融科技产业繁荣发
在早期冯·诺依曼计算机特征中,机器以()为中心。A.存储器 B.输入输出设备
对于可能发生地面洪水事故的情况,预警分级主要分为( )级。A.五 B.四
男性,20岁,因重度哮喘急性发作住院治疗缓解,平时亦有哮鸣音存在。出院时医生嘱其
共用题干 StepBackinTimeDoyouknowthat
阴道前后壁修补术后的患者应取<P>A.平卧位<br>B.半卧位<br>C.平卧位
(2021年真题)根据《社会消防安全教育培训规定》(公安部令第109号),下列关
模板设计中,振捣产生的荷载,可按()计。A.1kN/㎡ B.5kN/㎡
最新回复
(
0
)