首页
登录
职称英语
Radio and Television Radio and television were major age
Radio and Television Radio and television were major age
游客
2023-07-25
26
管理
问题
Radio and Television
Radio and television were major agents of social change in the 20th century. Radio was once the center for family entertainment and news and television enhanced this revolution by adding sight to sound. Both opened the windows to other lives, to remote areas of the world, and to history in the making. News coverage changed from early and late editions of newspapers to broadcast coverage from the scene. Play-by-play sports broadcasts and live concerts enhanced entertainment coverage. For many, the only cultural performances or sports events they would ever hear or see would come from the speakers or the screens in their living rooms. Each has engaged millions of people in the major historical events that have shaped the world.
If people could look at the sky and see how it is organized into frequency" bands used for different purposes, they would be amazed. Radio waves crisscross (十字形) the atmosphere at the speed of tight, delivering incredible amounts of information—navigational data, radio signals, television pictures—using devices for transmission and reception designed, built, and refined by a century of engineers.
Key figures in the late 1800s included Nikola Tesla, who developed the Tesla coil, and James Clerk Maxwell and Heinrich Hertz, who proved mathematically the possibility of transmitting electromagnetic signals between widely separated points. It was Guglielmo Marconi who was most responsible for taking the theories of radio waves out of the laboratory and applying them to practical devices. His "wireless" telegraph demonstrated its great potential for worldwide communication in 1901 by sending a signal—the letter "s"—in Morse code a distance of 2 000 miles across the Atlantic Ocean. Radio technology was just around the comer.
Immediate engineering challenges addressed the means of transmitting and receiving coded messages, and developing a device that could convert a high-frequency oscillating (振荡的) signal into an electric current capable of registering as sound. The first significant development was "the Edison effect", the discovery that the carbon filament (灯丝) in the electric light bulb could send out a stream of electrons to a nearby test electrode if it had a positive charge. In 1904, Sir John Ambrose Fleming of Britain took this one step further by developing the diode (二极管) which allowed electric current to be detected by a telephone receiver. Two years later, American Lee De Forest developed the triode (三极管), introducing a third electrode (the grid) between the filament and the plate. It could amplify a signal to make live voice broadcasting possible, and was quickly added to Marconi’s wireless telegraph to produce the radio.
Radio development was prevented by restrictions placed on airwaves during World War I. Technical limitations were also a problem. Few people had receivers, and those that did had to wear headphones. Radio was seen by many as a hobby for telegraphy fans. It would take a great deal of engineering before the radio would become the unifying symbol of family entertainment and the medium for news that was its destiny.
In the mid-1920s, technical developments expanded transmission distances, radio stations were built across the country, and the performance and appearance of the radio were improved. With tuning circuits, capacitors, microphones, oscillators, and loudspeakers, the industry blossomed in just a decade. By the mid-1930s almost every American household had a radio. The appearance of the transistor in the 1950s completely transformed its size, style, and portability.
Both television and radar were logical byproducts of the radio. Almost 50 years before television became a reality, its fundamental principles had been independently developed in Europe, Russia, and the United States. John Baird in England and Charles Jenkins in the United States worked independently to combine modulated light and a scanning wheel to reconstruct a scene. In 1925, Baird succeeded in transmitting a recognizable image.
Philo T. Farnsworth, a 21-year-old inventor from Utah, patented a scanning ray tube, and Vladimir Zworykin of RCA devised a superior television camera in 1930. Regularly scheduled broadcasts started shortly thereafter, and by the early 1940s there were 23 television stations in operation throughout the United States.
Shortly after World War Ⅱ, televisions began to appear on the market. The first pictures were faded and flickering, but more than a million sets were sold before the end of the decade. An average set cost $500 at a time when the average salary was less than $3 000 a year. In 1950 engineers perfected the process of production and prices dropped to $200 per set. Within 10 years 45 million units were sold.
A study of how human vision works enabled engineers to develop television technology. Images are retained in a viewer’s eye for only a fraction of a second after they strike it. By displaying images piece by piece at sufficient speed, the illusion of a complete picture can be created. By changing the image on the screen 25 to 30 times per second, movement can be realistically represented. Early scanning wheels slowly built a picture line by line. In contrast, each image on a modern color television screen is comprised of more than 100 000 pixels (像素), arranged in several hundred lines. The image displayed changes every few hundredths of a second. For a 15-minute newscast, the television must accurately process more than 1 billion units of information. Technical innovations that made this possible included a screen coated with millions of tiny dots of fluorescent compounds that emit light when struck by high: speed electrons.
Today this technology is in transition again, moving away from conventional television waves and on to separate digital signals. This holds the potential for making television interactive—allowing a viewer to play a game or order action replays. Cathode ray tubes with power-hungry electron guns are giving way to liquid crystal display (LCD) panels. Movie-style wide screens and flat screens are readily available. Digital signals enable High Definition Television (HDTV) to have almost doubled the usual number of pixels, giving a much sharper picture. The appearance of cable television and advances in fiber-optic technology will also help lift the present bandwidth (带宽) restrictions and increase image quality. [br] During World War I, radio ______ .
选项
A、was very popular among the public
B、was the symbol of family entertainment
C、had developed to a high level
D、was facing some technical problems
答案
D
解析
根据题干中的关键词World War I定位到文章第五段。这一段介绍了无线电在第一次世界大战时的发展状况和谋求发展所遇到的障碍。第一句指出战争期间各国政府禁止进行无线电广播,第二句提到技术限制也是收音机面临的问题,第三句指出拥有接收器的人很少,即使有也是耳机接收器,第四句还提到很多人认为收音机仅仅受到一些电信技术爱好者喜爱。结合选项可以看出,选项D)与原文的内容相符合,为正确答案。
转载请注明原文地址:https://tihaiku.com/zcyy/2868136.html
相关试题推荐
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
Theriseofradioandtelevisionbroadcastingmadenewcompetitivethreatsf
[originaltext]M:Hey!Yougotanewtelevision.W:Yeah!Itwasdeliveredyeste
[originaltext]M:Hey!Yougotanewtelevision.W:Yeah!Itwasdeliveredyeste
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcen
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcen
随机试题
WhyWinnersWinat..Thenewscienceo
WhenIwentofftocollege,Igotonepieceofadvicefrommyfather:"Itdo
营养性贫血就是指缺铁性贫血。( )
A.急性淋巴细胞白血病B.急性粒细胞白血C.急性单核细胞白血病D.急性巨核细胞白
县人民政府建设主管部门应当将房地产经纪机构及其分支机构的()等信息进行备案。
婴幼儿外周血液中可出现幼稚细胞的是()。A.房间隔缺损 B.室间隔缺损 C
在六西格玛策划时,衡量六西格玛项目的标准有()等。 A.财务B.企业内部
工资总额的准确统计为国家( )提供了重要依据。A.计算经济补偿金 B.了
买卖双方同意从未来某一时刻开始的某一特定期限内按照协议借贷一定数额以特定货币表示
物权中最重要也最完全的一种权利是所有权,所有权内容的核心是()。A.占有权 B
最新回复
(
0
)