关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Me

练习题库2022-08-02  46

问题 关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以

选项 A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系
B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析
C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇
D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以

答案 D

解析 本题考查数据挖掘的基础知识。K-Means和DBSCAN是两个经典的聚类算法,将相似的数据对象归类一组,不相似的数据对象分开。K-means算法基于对象之间的聚类进行聚类,需要输入聚类的个数。DBSCAN算法基于密度进行聚类,需要确定阈值,两者的聚类结果均与输入参数关系很大。DBSCAN可以处理不同大小和不同形状的簇,而K-means算法则不适合。若数据分布密度变化大,则这两种算法都不适用。
转载请注明原文地址:https://tihaiku.com/congyezige/2418585.html

最新回复(0)