线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(

练习题库2022-08-02  75

问题 线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。例如,线性规划问题:max S=x+y(求S=x+y的最大值);2x+y≤7,x+2y≤8,x≥0,y≥0的可行解区是由四条直线2x+y=7,x+2y=8,x=0,y=0围成的,共有四个顶点。除了原点外,其他三个顶点是(  )。因此,该线性规划问题的解为(  )。问题1选项A.(2,3),(0,7),(3.5,0)B.(2,3),(0,4),(8,0)C.(2,3),(0,7),(8,0)D.(2,3),(0,4),(3.5,0)问题2选项A.x=2,y=3B.x=0,y=7C.x=0,y=4D.x=8,y=0

选项

答案 DA

解析 本题考查应用数学(线性规划)基础知识。
本题中的可行解区是由四条直线2x+y=7, x+2y=8, x=0,y=0围成的,可行解区的每个顶点都是由两条直线相交得到的。
2x+y=7与 x=0的交点(0,7)不符合条件x+2y≤8,因此(0,7)不是可行解区的顶点(落在可行解区外)。
x+2y=8与y=0的交点(8,0)不符合条件2x+y≤7,因此(8,0)不是可行解区的顶点(落在可行解区外)。
2x+y=7与x+2y=8的交点(2,3),2x+y=7与y=0的交点(3.5,0),x+2y=8与 x=0的交点(0,4),x=0与y=0的交点(0,0)都属于可行解区的顶点。在这四个顶点中,x=2,y=3可使目标函数S达到极大值5。
转载请注明原文地址:https://tihaiku.com/congyezige/2401776.html

最新回复(0)