首页
登录
职称英语
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] Why
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] Why
游客
2025-02-08
56
管理
问题
Astronomy: The Auroras
[br] Why does the professor say this:
W: For centuries, people have told stories to explain the moving lights in the night sky—the curtains of greenish-white light with pink fringe. People described these lights as the breath of the Earth, powerful spirits, or angel light. An early twentiethcentury explorer wrote about the "bloody red" and "ghostly green" lights. These lights, of course, are the aurora borealis—the northern lights—and, in the south, the aurora australis. Most of the time they’re greenish-yellow, but sometimes they take colors from violet to red. The auroras can be seen at any time of the year, with the right atmospheric conditions. They’re most often seen near the North and South Poles, during times of maximum solar activity. The closer to the North or South Pole you are, the better you can see the lights.
The auroras occur in the ionosphere. The ionosphere is the layer of the upper atmosphere where high energy solar radiation strips electrons from oxygen and nitrogen atoms, and leaves them as positively charged ions. The auroras are the result of a complex interaction between the solar wind and the Earth’s magnetic field. Here’s what happens. The sun’s heat charges the particles in the solar wind, a stream of electrically charged subatomic particles that continually emanates from the sun. As the solar wind approaches Earth, it’s deflected by Earth’s magnetic field and diverted north and south toward the magnetic poles. The interaction between the solar wind and the magnetosphere generates beams of electrons. These electrons collide with atoms and molecules within the ionosphere near Earth’s magnetic poles. The collisions rip apart molecules and excite atoms. Thus, oxygen and nitrogen atoms in the ionosphere become "excited, "or ionized. The auroras happen when these ionized atoms return to their normal state from their excited, energized states. The ions combine with free electrons—as they do so, they emit radiation. Part of this radiation is visible light: the aurora borealis and aurora australis.
Yes, Simon?
M: Uh ... it sounds kind of like electricity.
W: Yes, that’s right. The auroras are an electrical phenomenon. As you know, an electrical generator has two components: a conductor and a magnetic field. To generate electricity, the conductor has to move across the field to produce a force. With the auroras, the conductor is the solar wind carrying a stream of charged particles.
M: So, what happens is, when, uh, when the charged particles reach Earth’s magnetic field, they, uh, move along in the field towards the north and south magnetic poles.
W: Exactly. And then the particles collide with gases in the atmosphere—oxygen and nitrogen—and the oxygen and nitrogen atoms get excited. And then, when the particles get de-excited and return to their normal state, they emit the auroras by releasing energy in the form of light. Oxygen releases either dark red or ghostly green. Nitrogen emits rosy pink or magenta. The activity of the auroras varies with the sun’s activity. When the sun is quiet, the auroras can be seen only in a small area. When the sun is active, however, the aurora borealis can be seen across southern Canada and the northern United States.
选项
A、To explain how the auroras are electrical in nature
B、To change the subject to something more interesting
C、To encourage the student to observe the auroras
D、To imply that the auroras contribute to global warming
答案
A
解析
Why does the professor say this:
"As you know, an electrical generator has two components: a conductor and a magnetic field. To generate electricity, the conductor has to move across the field to produce a force. With the auroras, the conductor is the solar wind carrying a stream of charged particles."
The professor’s purpose is to explain how the auroras are electrical in nature. The student says it sounds kind of like electricity, and the professor responds by explaining how electricity is generated by the solar wind, carrying a stream of charged particles and moving across Earth’s magnetic field. (2.3)
转载请注明原文地址:http://tihaiku.com/zcyy/3948322.html
相关试题推荐
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Whatphysicalfeat
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Listenagaintopa
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Selectthebirdth
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Whydoesthe
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]The
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]Why
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]Wha
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
随机试题
Therecentsurgeinoilpricestoroughly$55abarrelteachessomeusefulle
[originaltext]M:Thatwasalovelyparty,wasn’tit?W:Yes,itwas.Thefoodw
Therearemanyfeaturesthat【C1】______amovieasAmerican,butperhapsthe
[originaltext]W:We’vegotalotofworktodonow,[13]buttakeyourtimeove
用()命令可以建立唯一索引。A.CREATETABLE B.CREATECLU
近球小管重吸收的关键动力是A. B.管腔膜上的同向转运 C.管腔膜上的逆向转
在金融管制的情况下,资金的供给绕开商业银行这个媒介体系,直接输送到需求方和融资者
下列特定穴中,多用于治疗脏腑疾病的是A、原穴 B、络穴 C、八脉交会穴 D
护士王某,在广东省进行护士执业注册3年,因工作调动,欲往江西省某医院继续从事护理
A.举之有余,按之稍减不空 B.三部脉举之无力,按之空虚 C.浮大中空,如按
最新回复
(
0
)