首页
登录
职称英语
When I was a graduate student in biochemistry at Tufts University School of
When I was a graduate student in biochemistry at Tufts University School of
游客
2024-12-24
29
管理
问题
When I was a graduate student in biochemistry at Tufts University School of Medicine, I read an abridged version of Montaigne’s Essays. My friend Margaret Rea and I spent hours wandering around Boston discussing the meaning and implications of the essays. Michel de Montaigne lived in the 16th century near Bordeaux, France. He did his writing in the southwest tower of his chateau, where he surrounded himself with a library of more than 1,000 books, a remarkable collection for that time. Montaigne posed the question, "What do I know?" By extension, he asks us all: Why do you believe what you think you know? My latest attempt to answer Montaigne can be found in Everyday Practice of Science: Where Intuition and Passion Meet Objectivity and Logic, originally published in January 2009 and soon to be out in paperback from the Oxford University Press.
Scientists tend to be glib about answering Montaigne’s question. After all, the success of technology testifies to the truth of our work. But the situation is more complicated.
In the idealized version of how science is done, facts about the world are waiting to be observed and collected by objective researchers who use the scientific method to carry out their work. But in the everyday practice of science, discovery frequently follows an ambiguous and complicated route. We aim to be objective, but we cannot escape the context of our unique life experiences. Prior knowledge and interests influence what we experience, what we think our experiences mean, and the subsequent actions we take. Opportunities for misinterpretation, error, and self-deception abound.
Consequently, discovery claims should be thought of as protoscience. Similar to newly staked mining claims, they are full of potential. But it takes communal scrutiny and acceptance to transform a discovery claim into a mature discovery. This is the credibility process, through which the individual researcher’s me, here, now becomes the community’s anyone, anywhere, anytime. Objective knowledge is the goal, not the starting point.
Once a discovery claim becomes public, the discoverer receives intellectual credit. But, unlike with mining claims, the community takes control of what happens next. Within the complex social structure of the scientific community, researchers make discoveries; editors and reviewers act as gatekeepers by controlling the publication process; other scientists use the new finding to suit their own purposes; and finally, the public (including other scientists) receives the new discovery and possibly accompanying technology. As a discovery claim works its way through the community, a dialectic of interaction and confrontation between shared and competing beliefs about the science and the technology involved transforms an individual’s discovery claim into the community’s credible discovery.
Two paradoxes infuse this credibility process. First, scientific work tends to focus on some aspect of prevailing knowledge that is viewed as incomplete or incorrect. Little reward accompanies duplication and confirmation of what is already known and believed. The goal is new-search, not research. Not surprisingly, newly published discovery claims and credible discoveries that appear to be important and convincing will always be open to challenge and potential modification or refutation by future researchers. Second, novelty itself frequently provokes disbelief. Nobel Laureate and physiologist Albert Szent-Gyorgyi once described discovery as "seeing what everybody has seen and thinking what nobody has thought." But thinking what nobody else has thought and telling others what they have missed may not change their views. Sometimes years are required for truly novel discovery claims to be accepted and appreciated.
In the end, credibility "happens" to a discovery claim — a process that corresponds to what philosopher Annette Baier has described as the commons of the mind. "We reason together, challenge, revise, and complete each other’s reasoning and each other’s conceptions of reason," she wrote in a book with that title. In the case of science, it is the commons of the mind where we find the answer to Montaigne’s question: Why do you believe what you think you know? [br] According to the third paragraph, the process of discovery is characterized by its
选项
A、uncertainty and complexity.
B、misconception and deceptiveness.
C、logicality and objectivity.
D、systematicness and regularity.
答案
A
解析
事实细节题。第三段第二句。But转折处指出在日常的实践中,科学发现常常遵循一个不确定而复杂的路径。题干中的process与文中的follows…route对应;因此答案选[A],uncertainty and complexity同义转述文中的ambiguous and complicated。该段末句提到的“误解、差错和自欺欺人时常发生”是我们以前的经验、知识和兴趣可能会对科学发现产生的影响,并不是其特点,故排除[B]。[C]和[D]是针对第三段首句提到的理想化状态下的科学发现所进行的错误推断。
转载请注明原文地址:http://tihaiku.com/zcyy/3882810.html
相关试题推荐
Anystudentsettingoutonacademiccareerinscienceislikelytobecomein
Anystudentsettingoutonacademiccareerinscienceislikelytobecomein
Anystudentsettingoutonacademiccareerinscienceislikelytobecomein
OneschoolnightthismonthIsidleduptoAlexander,my15-year-oldson,an
OneschoolnightthismonthIsidleduptoAlexander,my15-year-oldson,an
OneschoolnightthismonthIsidleduptoAlexander,my15-year-oldson,an
OneschoolnightthismonthIsidleduptoAlexander,my15-year-oldson,an
Itiscommonforstudentsinhighschooltowonderifcollegeeducationis
Itiscommonforstudentsinhighschooltowonderifcollegeeducationis
Itiscommonforstudentsinhighschooltowonderifcollegeeducationis
随机试题
电压互感器二次回路的负载有()A.计量表计的电压线圈 B.继电保护的电流线
病员及其家属和医疗单位对医疗事故技术鉴定委员会所作的结论或者对卫生行政部门所作的
“启我爱医术,复爱世间人,愿绝名利心,尽力为病人,无分爱与憎,不问富与贫,凡诸疾
A.从头走手B.从手走胸C.从手走头D.从头走足E.从足走腹足三阳经的走向是
A.双侧瞳孔缩小 B.小脑幕裂孔疝早期 C.双侧瞳孔散大 D.瞳孔呈椭圆形
各种运输方式内外部的各个方面的构成和联系,就是( )。 A.运输系统
下列各项中,属于竞争导向定价的是( )。A、目标定价法 B、认知价值定价法
档案记录法可用于采集( )。A.组织过去的决策机构效果 B.组织过去的决策效
关于类风湿性关节炎的描述,下列哪项不正确? A.是一种非特异性炎症B.其发生与
、当问题重大,确急需直接上级和更高层次的上级机关同时了解公文内容时,可采用
最新回复
(
0
)