首页
登录
职称英语
The Geodesic Dome (圆顶屋)--the House of the Future? R.
The Geodesic Dome (圆顶屋)--the House of the Future? R.
游客
2024-06-07
29
管理
问题
The Geodesic Dome (圆顶屋)--the House of the Future?
R. Buckminster Fuller spent much of the early 20th Century looking for ways to improve human shelter by applying modern technological know-how to shelter construction, making shelter more comfortable and efficient, and more economically available to a greater number of people.
After acquiring some experience in the building industry and discovering the traditional practices and perceptions which severely limit changes and improvements in construction practices, Fuller carefully examined and improved interior structure equipment, including the toilet, the shower, and the bathroom as a whole. He studied structure shells, and devised a number of alternatives, each less expensive, lighter, and stronger than traditional wood, brick, and stone buildings.
In 1944, the United States suffered a serious housing shortage. Government officials knew that Fuller had developed a prototype of family dwelling which could be produced rapidly, using the same equipment which had previously built war-time airplanes. They could be "installed" anywhere, the way a telephone is installed, and with little additional difficulty. When one official flew to Wichita, Kansas to see this house, which Beech Aircraft and Fuller built, the man reportedly gasped, "My God! This is the house of the future!"
Soon, unsolicited checks poured in from people who wanted to purchase this new kind of house, but Fuller was never able to get it into full production. This was due to many obstacles such as only union contractors were able to hook the houses up to water, power and sewers in many cities. However, because the houses were already wired and had the plumbing installed by the aircraft company, many construction trade unions made it clear that they would not work on the houses. There were also in-house differences between Fuller and the stockholders. Fuller did not feel the house design was complete; there were problems he wanted to fix. But the stockholders wanted to move ahead. However, the main obstruction was obtaining the financing for the tooling costs, which were purposefully not included in the negotiations with investors. No bank would finance the project with union problems and stockholder battles.
After the war, Fuller’s efforts focused on the problem of how to build a shelter which is so lightweight that it can be delivered by air. Shelter should be mobile which would require great breakthroughs in the weight-reduction of the materials. Technology would have to follow nature’s design as seen by the spider’s web which can float in a hurricane because of its high strength-to-weight ratio. New shelter would have to be designed that assimilates these principles and that was Fuller’s intent.
One of the ways Buckminster Fuller would describe the differences in strength between a rectangle and a triangle would be apply pressure to both structures. The rectangle would fold up and be unstable but the triangle withstands the pressure and is much more rigid--in fact the triangle is twice as strong. This principle directed his studies toward creating a new architectural design, the geodesic dome, based also upon his idea of "doing more with less". Fuller discovered that if a spherical structure was created from triangles, it would have incomparable strength.
The sphere uses the "doing more with less" principle in that it encloses the largest volume of interior space with the least amount of surface area thus saving on materials and cost. Fuller reintroduced the idea that when the sphere’s diameter is doubled it will quadruple its square footage and produce eight times the volume.
The spherical (球形的) structure of a dome is one of the most efficient interior atmospheres for human dwellings because air and energy are allowed to circulate without obstruction. This enables heating and cooling to occur naturally. Geodesic shelters have been built all around the world in different climates and temperatures and still they have proven to be the most efficient human shelter one can find.
More specifically, the dome is energy efficient for many reasons: its decreased surface area requires less building materials; exposure to cold in the winter and heat in the summer is decreased because, being spherical, there is the least surface area per unity of volume per structure; the curved-in interior creates a natural airflow that allows the hot or cool air to flow evenly throughout the dome with the help of return air ducts; extreme wind turbulence is lessened because the winds that contribute to heat loss flow smoothly around the dome; it acts like a type of giant down-pointing headlight reflector and reflects and concentrates interior heat. This helps prevent radiant heat loss.
The net annual energy savings for a dome owner is 30% less than normal rectilinear (直线的) homes according to the Oregon Dome Co. This is quite an improvement and helps save the environment from wasted energy. Domes have been designed by Fuller and others to withstand high winds and extreme temperatures as seen in the Polar Regions.
Many dome manufacturers offer various designs in geodesic dome housing with little assembly time required. Some houses can be assembled in less than a day with others taking up to six months. Many also come in dome kits that buyers can build themselves or with the help of friends.
R. Buckminster Fuller’s first worldwide acceptance by the architectural community occurred with the 1954 Triennale where his cardboard dome was displayed for the first time. The Milan Triennale was established to stage international exhibitions aimed to present the most innovative accomplishments in the fields of design, crafts, architecture and city planning.
The theme for 1954 was Life between Artifact and Nature: Design and the Environmental Challenge, which fit in perfectly with Fuller’s work. Fuller had begun efforts towards the development of a Comprehensive Anticipatory Design Science, which he defined as, "the effective application of the principles of science to the conscious design of our total environment in order to help make the Earth’s limited resources meet the needs of all humanity without disrupting the ecological processes of the planet." The cardboard shelter that was part of his exhibit could be easily shipped and assembled with the directions printed right on the cardboard. The 42-foot paper board Geodesic was installed in old Sforza garden in Milan and came away with the highest award, the Grand Premio. [br] Every year, a dome owner may spend 30% less in energy expenditure than a normal rectilinear home one.
选项
A、Y
B、N
C、NG
答案
A
解析
参见文中倒数第4段第1句:“The net annual energy savings for a dome owner is 30% less than normal rectilinear(直线的)homes according to the Oregon Dome Co,”(圆顶房屋的住户每年能源节约量要比常规的直线房屋的住户少30%。)
转载请注明原文地址:http://tihaiku.com/zcyy/3623699.html
相关试题推荐
Fromthepassage,whichisthemaininfluencefactorinthefuture?[br]Theinf
Fromthepassage,whichisthemaininfluencefactorinthefuture?[br]Fromth
Oncetheyhadfame,fortune,securefutures;______(如今只剩下贫穷).nowallthatisleft
TheGeodesicDome(圆顶屋)--theHouseoftheFuture?R.
TheGeodesicDome(圆顶屋)--theHouseoftheFuture?R.
TheGeodesicDome(圆顶屋)--theHouseoftheFuture?R.
TheGeodesicDome(圆顶屋)--theHouseoftheFuture?R.
TheGeodesicDome(圆顶屋)--theHouseoftheFuture?R.
Aprojectlikelytoevolvein.thenearorintermediatefutureisspacetour
Aprojectlikelytoevolvein.thenearorintermediatefutureisspacetour
随机试题
关于卷材防水层屋面施工的说法,证确的是()A.厚度小于3mm的高聚物改性沥青防
四环素不易透入哪些组织()A.乳汁 B.胎儿循环 C.脑脊液 D.胸腔
班主任要努力成为学生的人生导师,是教育部在新时代对班主任提出的要求。()
A.法律的渊源 B.法律的规范 C.卫生法 D.卫生法律 E.卫生法规法
甲厂生产一种易拉罐装碳酸饮料。消费者丙从乙商场购买这种饮料后,在开启时被罐内强烈
【教学过程】 (一)新课导入 教师展示Flash制作的动画:“同学们,在上课之前,让我们先看一个动画。大家从这个动画里看到了什么呢?” 学生:看到“
抗菌谱广,单独应用易使细菌产生耐药性,一般无法单独应用的是A.甲硝唑 B.甲氧
患者,男,20岁。他每次寄信时总要反复核对收信人地址,总怕写错。投信后又总是怀疑
人在每一瞬间,将心理活动选择了某些对象而忽略了另一些对象。这一特点指的是注意的(
无功就地补偿器的适用范围包括();变压器负载率高;安装无功就地补偿可减少相关电
最新回复
(
0
)