首页
登录
职称英语
Trust Me, I’m a Robot With robots now emerging f
Trust Me, I’m a Robot With robots now emerging f
游客
2024-05-15
30
管理
问题
Trust Me, I’m a Robot
With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists are concerned about the safety implications beyond the factory floor. To address these concerns, leading robot experts have come together to try to find ways to prevent robots from harming people. Inspired by the Pugwash Conferences—an international group of scientists, academics and activists founded in 1957 to campaign for the non-proliferation of nuclear weapons—the new group of robo-ethicists met earlier this year in Genoa, Italy, and announced their initial findings in March at the European Robotics Symposium in Palermo, Sicily.
"Security and safety are the big concerns," says Henrik Christensen, chairman of the European Robotics Network at the Swedish Royal Institute of Technology in Stockholm. Should robots that are strong enough or heavy enough to crush people be allowed into homes? Is "system malfunction" a justifiable defence for a robotic fighter plane that contravenes (违反) the Geneva Convention and mistakenly fires on innocent civilians?
"These questions may seem hard to understand but in the next few years they will become increasingly relevant," says Dr. Christensen. According to the United Nations Economic Commission for Europe’s World Robotics Survey, in 2002 the number of domestic and service robots more than tripled, nearly surpassing their industrial counterparts. By the end of 2003 there were more than 600,000 robot vacuum cleaners and lawn mowers—a figure predicted to rise to more than 4m by the end of next year. Japanese industrial firms are racing to build humanoid robots to act as domestic helpers for the elderly, and South Korea has set a goal that 100% of households should have domestic robots by 2020. In light of all this, it is crucial that we start to think about safety guidelines now, says Dr. Christensen.
Stop right there
So what exactly is being done to protect us from these mechanical menaces? "Not enough," says Blay Whitby. This is hardly surprising given that the field of "safety-critical computing" is barely a decade old, he says. But things are changing, and researchers are increasingly taking an interest in trying to make robots safer. One approach, which sounds simple enough, is try to program them to avoid contact with people altogether. But this is much harder than it sounds. Getting a robot to navigate across a cluttered room is difficult enough without having to take into account what its various limbs or appendages might bump into along the way.
"Regulating the behaviour of robots is going to become more difficult in the future, since they will increasingly have self-learning mechanisms built into them," says Gianmarco Veruggio. "As a result, their behaviour will become impossible to predict fully," he says, "since they will not be behaving in predefined ways but will learn new behaviour as they go."
Then there is the question of unpredictable failures. What happens if a robot’s motors stop working, or it suffers a system failure just as it is performing heart surgery or handing you a cup of hot coffee? You can, of course, build in redundancy by adding backup systems, says Hirochika Inoue. But this guarantees nothing, he says. "One hundred per cent safety is impossible through technology," says Dr. Inoue. This is because ultimately no matter how thorough you are, you cannot anticipate the unpredictable nature of human behaviour, he says. Or to put it another way, no matter how sophisticated your robot is at avoiding people, people might not always manage to avoid it, and could end up tripping over it and falling down the stairs.
Legal problems
In any case, says Dr. Inoue, the laws really just summarize commonsense principles that are already applied to the design of most modern appliances, both domestic and industrial. Every toaster, lawn mower and mobile phone is designed to nunimize the risk of causing injury—yet people still manage to electrocute (电死) themselves, lose fingers or fall out of windows in an effort to get a better signal. At the very least, robots must meet the rigorous safety standards that cover existing products. The question is whether new, robot-specific rules are needed—and, if so, what they should say.
"Making sure robots are safe will be critical," says Colin Angle of iRobot, which has sold over 2m "Roomba" household-vacuuming robots. But he argues that his firm’s robots are, in fact, much safer than some popular toys. "A radio-controlled car controlled by a six-year old is far more dangerous than a Roomba," he says. If you tread on a Roomba, it will not cause you to slip over; instead, a rubber pad on its base grips the floor and prevents it from moving. "Existing regulations will address much of the challenge," says Mr. Angle. "I’m not yet convinced that robots are sufficiently different that they deserve special treatment."
Robot safety is likely to surface in the civil courts as a matter of product liability. "When the first robot carpet-sweeper sucks up a baby, who will be to blame?" asks John Hallam, a professor at the University of Southern Denmark in Odense. If a robot is autonomous and capable of learning, can its designer be held responsible for all its actions? Today the answer to these questions is generally "yes". But as robots grow in complexity it will become a lot less clear cut, he says.
"Right now, no insurance company is prepared to insure robots," says Dr. Inoue. But that will have to change, he says. Last month, Japan’s Ministry of Trade and Industry announced a set of safety guidelines for home and office robots. They will be required to have sensors to help them avoid collisions with humans; to be made from soft and light materials to minimize harm if a collision does occur; and to have an emergency shut-off button. This was largely prompted by a big robot exhibition held last summer, which made the authorities realize that there are safety implications when thousands of people are not just looking at robots, but mingling with them, says Dr. Inoue.
However, the idea that general-purpose robots, capable of learning, will become widespread is wrong suggests Mr. Angle It is more likely, he believes, that robots will be relatively dumb machines designed for particular tasks. Rather than a humanoid robot maid, "it’s going to be a heterogeneous (不同种类的) swarm of robots that will take care of the house," he says. [br] According to John Hallam, who should be responsible for the harm done by robots in the future will not be so ______ as it is now.
选项
答案
clear cut
解析
空白处需要形容词成分作be的表语。原文最后一句的it指的是倒数第2句的the answer to these questions,而题目中的主语从句正是问题之一。题目的not so…as结构替代了原文的比较级less….所以只需把原文中的比较级改成原级,就可得出答案。
转载请注明原文地址:http://tihaiku.com/zcyy/3599996.html
相关试题推荐
RespondingtoemergingdiseasessuchasSARSis______torespondingtoabioter
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TrustMe,I’maRobotWithrobotsnowemergingf
TheEmergingOnlineGiantsTheymaynothavethenamere
TheEmergingOnlineGiantsTheymaynothavethenamere
随机试题
PhilosophyofLogicalAnalysisModernphysicsandphysio
【S1】[br]【S7】A、treatB、dealC、maneuverD、handleD词义辨析题。treat意为“对待”,deal意为“处理”,常
现代物流对国民经济的影响和作用?
堤防工程级别根据堤防工程的防洪标准确定,当堤防的防洪标准大于等于10年又小于20
一般来说,班级的规章制度主要由三部分组成:一是教育行政部门规定的有关制度;二是学
从投资角度来看,投资基金国际化的意义不包括()。A.自由地选择投资地域和投资标
女性,20岁。因外伤致第4、5颈椎骨折并发颈髓损伤。四肢呈弛缓性瘫痪,高热40℃
修改省域城镇体系规划向国务院报告前,()应当结合对省域城镇体系规划实施情况
甲公司2×21年发生如下投资业务: (1)1月1日,购入乙公司当日发
在工程建设设计进度控制计划体系中,需要考虑设计分析评审的工作时间安排的进度计划是
最新回复
(
0
)