首页
登录
职称英语
Trust Me, I’m a Robot[A]With robots now emerging from t
Trust Me, I’m a Robot[A]With robots now emerging from t
游客
2024-04-16
38
管理
问题
Trust Me, I’m a Robot
[A]With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists are concerned about the safety implications beyond the factory floor. To address these concerns, leading robot experts have come together to try to find ways to prevent robots from harming people. Inspired by the Pugwash Conferences—an international group of scientists, academics and activists founded in 1957 to campaign for the non-proliferation of nuclear weapons—the new group of robo-ethicists met earlier this year in Genoa, Italy, and announced their initial findings in March at the European Robotics Symposium in Palermo, Sicily.
[B]"Security and safety are the big concerns," says Henrik Christensen, chairman of the European Robotics Network at the Swedish Royal Institute of Technology in Stockholm. Should robots that are strong e-nough or heavy enough to crush people be allowed into homes? Is "system malfunction" a justifiable defence for a robotic fighter plane that contravenes(违反)the Geneva Convention and mistakenly fires on innocent civilians?
[C]"These questions may seem hard to understand but in the next few years they will become increasingly relevant," says Dr. Christensen. According to the United Nations Economic Commission for Europe’s World Robotics Survey, in 2002 the number of domestic and service robots more than tripled, nearly surpassing their industrial counterparts. By the end of 2003 there were more than 600,000 robot vacuum cleaners and lawn mowers—a figure predicted to rise to more than 4m by the end of next year. Japanese industrial firms are racing to build humanoid robots to act as domestic helpers for the elderly, and South Korea has set a goal that 100% of households should have domestic robots by 2020. In light of all this, it is crucial that we start to think about safety guidelines now, says Dr. Christensen.
Stop right there
[D]So what exactly is being done to protect us from these mechanical menaces? "Not enough," says Blay Whitby. This is hardly surprising given that the field of "safety-critical computing" is barely a decade old, he says. But things are changing, and researchers are increasingly taking an interest in trying to make robots safer. One approach, which sounds simple enough, is try to program them to avoid contact with people altogether. But this is much harder than it sounds. Getting a robot to navigate across a cluttered room is difficult enough without having to take into account what its various limbs or appendages might bump into along the way.
[E]"Regulating the behaviour of robots is going to become more difficult in the future, since they will increasingly have self-learning mechanisms built into them," says Gianmarco Veruggio. "As a result, their behaviour will become impossible to predict fully," he says, "since they will not be behaving in predefined ways but will learn new behaviour as they go."
[F]Then there is the question of unpredictable failures. What happens if a robot’s motors stop working, or it suffers a system failure just as it is performing heart surgery or handing you a cup of hot coffee? You can, of course, build in redundancy by adding backup systems, says Hirochika Inoue. But this guarantees nothing, he says. "One hundred per cent safety is impossible through technology," says Dr. Inoue. This is because ultimately no matter how thorough you are, you cannot anticipate the unpredictable nature of human behaviour, he says. Or to put it another way, no matter how sophisticated your robot is at avoiding people, people might not always manage to avoid it, and could end up tripping over it and falling down the stairs.
Legal problems
[G]In any case, says Dr. Inoue, the laws really just summarize commonsense principles that are already applied to the design of most modern appliances, both domestic and industrial. Every toaster, lawn mower and mobile phone is designed to minimize the risk of causing injury—yet people still manage to electrocute(电死)themselves, lose fingers or fall out of windows in an effort to get a better signal. At the very least, robots must meet the rigorous safety standards that cover existing products. The question is whether new, robot-specific rules are needed—and, if so, what they should say.
[H]"Making sure robots are safe will be critical," says Colin Angle of iRobot, which has sold over 2m "Roomba" household-vacuuming robots. But he argues that his firm’s robots are, in fact, much safer than some popular toys. "A radio-controlled car controlled by a six-year old is far more dangerous than a Roomba," he says. If you tread on a Roomba, it will not cause you to slip over; instead, a rubber pad on its base grips the floor and prevents it from moving. "Existing regulations will address much of the challenge," says Mr. Angle. "I’m not yet convinced that robots are sufficiently different that they deserve special treatment."
[I]Robot safety is likely to surface in the civil courts as a matter of product liability. "When the first robot carpet-sweeper sucks up a baby, who will be to blame?" asks John Hallam, a professor at the University of Southern Denmark in Odense. If a robot is autonomous and capable of learning, can its designer be held responsible for all its actions? Today the answer to these questions is generally "yes". But as robots grow in complexity it will become a lot less clear cut, he says.
[J]"Right now, no insurance company is prepared to insure robots," says Dr. Inoue. But that will have to change, he says. Last month, Japan’s Ministry of Trade and Industry announced a set of safety guidelines for home and office robots. They will be required to have sensors to help them avoid collisions with humans; to be made from soft and light materials to minimize harm if a collision does occur, and to have an emergency shut-off button. This was largely prompted by a big robot exhibition held last summer, which made the authorities realize that there are safety implications when thousands of people are not just looking at robots, but mingling with them, says Dr. Inoue.
[K]However, the idea that general-purpose robots, capable of learning, will become widespread is wrong, suggests Mr. Angle. It is more likely, he believes, that robots will be relatively dumb machines designed for particular tasks. Rather than a humanoid robot maid, "it’s going to be a heterogeneous(不同种类的)swarm of robots that will take care of the house," he says. [br] According to a survey, the number of domestic and service robots was three times over that of industrial robots in 2002.
选项
答案
C
解析
根据题目中的survey和in 2002定位至C段。该段通过列举数字说明家用和服务用机器人数量的增长。本题句子信息出现在该段中,three times与原文中tripled对应。
转载请注明原文地址:http://tihaiku.com/zcyy/3557229.html
相关试题推荐
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
TrustMe,I’maRobot[A]Withrobotsnowemergingfromt
随机试题
Wherearetheytalking?[br][originaltext]M:I’mgoingtogooutoftheoffice
"Brazilhasbecomeoneofthedevelopingworld’sgreatsuccessesatreducin
(),变形集中在试件某一较弱的局部区域,该区域截面逐渐收缩。A.弹性阶段 B
钢材的主要性能包括力学性能和工艺性能。其中工艺性能表示钢材在各种加工过程中的行为
由于血小板数量或功能的异常引起的出血性疾病是A.单纯性紫癜 B.药物过敏性紫癜
关于药物变态反应的论述,错误的是A.药物变态反应与人自身的过敏体质密切相关 B
患者,男,66岁。外受风邪,症见口眼斜,舌强不能言语,手足不能运动。治疗应首选(
肝硬化患者,出现表情欣快,语无伦次,昼睡夜醒。考虑为肝性脑病昏睡期。护士对病人饮
随着政府购买服务项目的运作日益成熟,项目管理能力成为社会服务机构重要的能力。社会
某施工单位中标一水闸工程。施工单位进场后,根据相关法律法规和强制性标准进行工程施
最新回复
(
0
)