首页
登录
职称英语
Animals on the Move It looked like a scene from "Jaw
Animals on the Move It looked like a scene from "Jaw
游客
2024-02-14
37
管理
问题
Animals on the Move
It looked like a scene from "Jaws" but without the dramatic music. A huge shark was lowly swimming through the water, its tail swinging back and forth like the pendulum of a clock.
Suddenly sensitive nerve ending in the shark’s skin picked up vibrations of a struggling fish. The shark was immediately transformed into a deadly, efficient machine of death. With muscles taut, the shark knifed through the water at a rapid speed. In a flash the shark caught its victim, a large fish, in its powerful jaws. Then, jerking its head back and forth, the shark tore huge chunks of flesh from its victim and swallowed them. Soon the action was over.
Moving to Survive
In pursuing its prey, the shark demonstrated in a dramatic way the important role of movement, or locomotion, in animals.
Like the shark, most animals use movement to find food. They also use locomotion to escape enemies, find a mate, and explore new territories. The methods of locomotion include crawling, hopping, slithering, flying, swimming, or walking.
Humans have the added advantage of using their various inventions to move about in just about any kind of environment. Automobiles, rockets, and submarines transport humans from deep oceans to as far away as the moon. However, for other animals movement came about naturally through millions of years of evolution. One of the most successful examples of animal locomotion is that of the shark. Its ability to quickly zero in on its prey has always impressed scientists. But it took a detailed study by Duke University marine biologists S. A. Wainwright, F. Vosburgh, and J. H. Hebrank to find out how the sharks did it. In their study the scientists observed sharks swimming in a tank at Marine land in Saint Augustine, Fla. Movies were taken of the sharks’ movements and analyzed. Studies were also made of shark skin and muscle.
Skin Is the Key
The biologists discovered that the skin of the shark is the key to the animal’s high efficiency in swimming through the water. The skin contains many fibers that crisscross like the inside of a belted radial tire. The fibers are called collagen fibers. These fibers can either store or release large amounts of energy depending on whether the fibers are relaxed or taut. When the fibers are stretched, energy is stored in them the way energy is stored in the string of a bow when pulled tight. When the energy is released, the fibers become relaxed.
The Duke University biologists have found that the greatest stretching occurs where the shark bends its body while swimming. During the body’s back and forth motion, fibers along the outside part of the bending body stretch greatly. Much potential energy is stored in the fibers. This energy is released when the shark’s body snaps back the other way.
As energy is alternately stored and released on both sides of the animal’s body, the tail whips strongly back and forth. This whip-like action propels the animal through the water like a living bullet.
Source of Energy
What causes the fibers to store so much energy? In finding the answer the Duke University scientists learned that the shark’s similarity to a belted radial tire doesn’t stop with the skin. Just as a radial tire is inflated by pressure, so, too, is the area just under the shark’s collagen "radials". Instead of air pressure, however, the pressure in the shark may be due to the force of the blood pressing on the collagen fibers.
When the shark swims slowly, the pressure on the fibers is relatively low. The fibers are more relaxed, and the shark is able to bend its body at sharp angles. The animal swims this way when looking around for food or just swimming. However, when the shark detects an important food source, some fantastic involuntary changes take place.
The pressure inside the animal may increase by 10 times. This pressure change greatly stretches the fibers, enabling much energy to be stored.
This energy is then transferred to the tail, and the shark is off. The rest of the story is predictable.
Dolphin Has Speed Record
Another fast marine animal is the dolphin. This seagoing mammal has been clocked at speeds of 32 kilometers (20 miles) an hour. Biologists studying the dolphin have discovered that, like the shark, the animal’s efficient locomotion can be traced to its skin. A dolphin’s skin is made up in such a way that it offers very little resistance to the water flowing over it. Normally when a fish or other object moves slowly through the water, the water flows smoothly past the body. This smooth flow is known as laminar flow. However, at faster speeds the water becomes more turbulent along the moving fish. This turbulence muses friction and slows the fish down.
In a dolphin the skin is so flexible that it bends and yields to the waviness of the water.
The waves, in effect, become tucked into the skin’s folds. This allows the rest of the water to move smoothly by in a laminar flow. Where other animals would be slowed by turbulent water at rapid speeds, the dolphin can race through the water at record breaking speeds.
Other Animals Less Efficient
Not all animals move as efficiently as sharks and dolphins. Perhaps the greatest loser in locomotion efficiency is the slug. The slug, which looks like a snail without a shell, lays down a slimy trail over which it crawls. It uses so much energy producing the slimy mucus and crawling over it that a mouse traveling the same distance uses only one twelfth as much energy.
Scientists say that because of the slug’s inefficient use of energy, its lifestyle must be restricted. That is, the animals are forced to confine themselves to small areas for obtaining food and finding proper living conditions. Have humans ever been faced with this kind of problem? [br] What is the key to the shark’s swift locomotion in water?
选项
A、The skin.
B、The tail.
C、The muscle.
D、The jaw.
答案
A
解析
本题属细节推断题。分析题干得知,本题考查鲨鱼在水中快速游动的关键是依靠什么。这与选项A完全一致,所以直接选择A即可。其他选项在文中均有提及,但是都不符合题干的要求。
转载请注明原文地址:http://tihaiku.com/zcyy/3448735.html
相关试题推荐
Largeancientanimalsaresupposed__________(曾经生活在这个地区).tohavelivedinthisa
[originaltext]Onewaythatscientistslearnaboutmanisbyanimals,sucha
Intheolddays,whenaglimpseofstockingwaslookeduponassomethingfar
Intheolddays,whenaglimpseofstockingwaslookeduponassomethingfar
Intheolddays,whenaglimpseofstockingwaslookeduponassomethingfar
【B1】[br]【B8】A、lookedB、ranC、openedD、searchedB作者闻到浓烈的烟味之后,应该是急忙跑到客厅里,而不是look
FoxesandfarmershavenevergotonwellThesesmalldog-likeanimalshavel
FoxesandfarmershavenevergotonwellThesesmalldog-likeanimalshavel
Theyoungdriverlookedovertheenginecarefullylest______(在途中出毛病).it(should
Wehumanbeingsarelandanimals,butwearealsocloselytiedtothesea.T
随机试题
A. B.当一端口无源网络由纯电阻构成时,可利用电阻串并联及Y-△变换
(2015年)下列税收文件属于税收法规的有( )。A.《中华人民共和国增值税暂行
癌症发生率比其他人高出三倍以上的人属于哪种类型A、A型 B、B型 C、C
某基金根据历史数据计算出来的贝塔系数为1.3,以下表述错误的是()。A.
双母线接线方式下变电站倒母线操作结束后,先退出母线保护互联压板,然后再合上母联断
该省从2010年至2013年GDP增长最快的一年是:() A.2010年
个体发展心理学的研究对象是()。 (A)人生全过程各个年龄阶段的心理发展特点
某药材呈圆柱状分枝,具一个分枝者习称"二杠",具二个分枝者习称"三岔"。该药材是
某商业银行为降低信用风险,运用多种方式进行信用风险缓释,成效显著。下列结果中,能
根据税收征收管理法律制度的规定,下列各项中,不属于纳税申报方式的是()。A
最新回复
(
0
)