首页
登录
职称英语
Dorothy Crowfoot Hodgkin When Dorothy Crowfoot Hodgkin was ten
Dorothy Crowfoot Hodgkin When Dorothy Crowfoot Hodgkin was ten
游客
2024-01-04
31
管理
问题
Dorothy Crowfoot Hodgkin
When Dorothy Crowfoot Hodgkin was ten years old, she watched her first crystals form on a string dangling in a glass of salt water. Many children before and since have done the same, but in Hodgkin’s case, the sparkling geometric shapes
kindled
a fascination that would lead her to world fame. In 1964, nearly half a century later, Hodgkin received a Nobel Prize in Chemistry for discovering the structures of penicillin and vitamin B12 from photographic images of their crystals. She made the images with a technique called x-ray crystallography, which involves firing x-rays through a crystal to determine the arrangement of the atoms in it. It is a bit like determining the shape of a jungle gym from its shadow.
Born in 1910, Hodgkin spent the first few years of her life in Cairo, where her father was an official in the British colonial government. Most of her education had been at home, but once back at school in England, her keen interest in crystals won the attention of her schoolteacher. Hodgkin and a friend got special permission to join the boys studying chemistry. By age 12, she was doing chemistry experiments on rocks she found in her garden to see what they contained. That summer, while visiting her father in Khartoum, Sudan, she met Dr. A. E. Joseph, a friend of her father’s and a well-known soil chemist. Joseph took her on a tour of his laboratory. Pleased by her intense interest, he put together a small chemistry set for her, which she took back to England and set up in her mother’s attic. It was her first laboratory.
Hodgkin enrolled at Oxford University, where she eventually specialized in x-ray crystallography. At the time, the analysis of the structures of even the simplest chemicals by x-ray crystallography required at least 30 sets of calculations, all done by hand. The work
demanded
perseverance and diligence, and a good head for math. Under these conditions, Hodgkin flourished. Seeking a greater challenge after college, Hodgkin went to Cambridge to study with a young crystallographer named J.D. Bernal. Together they solved some of the most complex chemical structures ever attempted, including
those
of several vitamins and sex hormones. They took the first x-ray photographs of a protein—the stomach enzyme pepsin—showing that proteins form regular crystals. In 1937, Hodgkin received her doctorate. Within a few months, she also married historian Thomas Hodgkin, taking his name. The Hodgkins were a two-career family, working in different towns and
commuting
on alternate weekends to see each other. Dorothy Hodgkin remained at Oxford, where she continued her research, taught university classes, and raised three children. When the demand for penicillin soared during World War Ⅱ, chemists all over the world raced to determine its structure. Experimental chemists used chemical reactions. Structural chemists, such as Hodgkin, used crystallography. Despite daunting calculations, Hodgkin and her students at Oxford completed the structure in 1949, beating the experimental chemists and establishing x-ray crystallography as an indispensable tool in biochemistry. Even as Hodgkin was finishing her analysis of penicillin, however, she had already begun a study of B12, widely used to treat pernicious anemia. In 1957, she published the structure of this 180-atom molecule. (A) [■] When she was awarded the Nobel Prize in 1964, she told a group of students at the ceremonies in Stockholm, Sweden, that she hoped her position as the only woman to receive the prize that year "will not be so very uncommon in the future, as more and more women carry out research in the same way as men".
(B) [■] But what was perhaps Hodgkin’s greatest success came after the Nobel Prize, when she tackled the biggest molecule of her career. Insulin, a protein that regulates the body’s sugar storage, contains over 1000 atoms.
(C) [■] A deficiency in or insensitivity to insulin causes diabetes, a complex disease that causes suffering in several hundred million people worldwide. Hodgkin solved the structure of insulin in only five years.
(D) [■] Her achievement proved that proteins have regular shapes, and it spawned research that ultimately led to effective treatments for diabetes. [br] According to the passage, what can be inferred about women’s participation in science during Hodgkin’s time?
选项
A、It had been improving a bit more than before.
B、It had been the same as before.
C、There were few women in science at that time.
D、A great many women had participated in science.
答案
C
解析
本题为推论题,考查的是考生能否对文章中没有明确阐述却暗示了的信息作出推论。题目问:根据文章,在Hodgkin时代,女性在科学领域里的处境是怎样的?根据第18题可知,女性当时获得诺贝尔奖还是非常少见的,所以可以推断出当时从事科学研究工作的女性还很少,所以选C。
转载请注明原文地址:http://tihaiku.com/zcyy/3331622.html
相关试题推荐
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwasten
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinw
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinw
随机试题
附近有重要建筑物时,不宜用()。在城市附近采用锤击或振动沉桩方法时,应采取
规范对旅馆客房隔墙体的空气声隔声量要求是不同的,其中要求最高的是()。A.客
图示体系不计阻尼的稳态最大动位移ymax=4PI3/9EI其最大动力弯矩为:
在导游讲解中,如游客提出与讲解内容无关的问题,导游可有礼貌地说:“请不要打岔。”
请从四个选项中选出正确的一项,其特征或规律与题干给出的一串符号的特征或规律最为
共用题干 甲、乙二人共同创办一个合伙企业,甲出资20万元人民币,乙以其土地使用
我国《环境保护法》中的“环境”是指:()A.影响生物生存的各种自然、社会、
企业组织结构的变化常常慢于战略的变化速度,特别是在经济快速发展时期里更是如此。结
()的合同计价方式,承包方的实际成本实报实销,这不利于鼓励承包方降低成本,使得
应急预案应当及时修订的情形有()。A.面临的事故风险发生重大变 B.在应急演练
最新回复
(
0
)