首页
登录
学历类
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
免费题库
2022-08-02
77
问题
选项
答案
解析
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。由介值定理可得存在ζ∈[2,3],使得f(ζ)=[f(2)+f(3)]/2,于是f(0)=f(η)=f(ζ),η∈(0,2),ζ∈[2,3]。函数f(x)在[0,η],[η,ζ]均满足罗尔定理,所以存在ξ1∈(0,η),ξ2∈(η,ζ),使得f′(ξ1)=f′(ξ2)=0。函数f′(x)在[ξ1,ξ2]满足罗尔定理,故存在ξ∈(ξ1,ξ2)(0,3),使得f″(ξ)=0。
转载请注明原文地址:http://tihaiku.com/xueli/2696971.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
金本位制下黄金输送点中汇率的波动区间为铸币平价(金平价)加或减输送黄金的成本。(
A.有最大值,有最小值 B.有最大值,没有最小值 C.没有最大值
设(x)在区间[0,2]上具有一阶连续导数,且(0)=(2)=0,。 证明:(
设幂级数的收敛区间为(-2,6),则的收敛区间为( )。A.(-2,6) B
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤
设函数y=f(x)在区间[-1,3]上的图形如图1所示。 说明:说明:11
试求在闭区域及上的最大值与最小值
求函数在约束条件和下的最大值与最小值
随机试题
______isthecommonfactorofthethreesounds:[p],[t],[k].A、VoicelessB、Vow
ThePonyExpressIntheUnitedStatest
Whoisthebuyer?______________________________ofAustralia.[br]Whatha
HowSledDogsWorkThey’rephysical
道德信念是道德品质的核心。()
下列不属于质量技术管理措施的是()。A.对于材料的采购、贮存、标识等做出明确的
“慎独”体现的护士哪方面素质( )A.思想道德素质 B.科学文化素质 C.
小邓,四川人,23岁,未婚,因肠炎做过手术,但身体还不错。父母在他5岁时就离婚了
为了实现人在操纵机械时不发生伤害,提出了诸多实现机械安全的途径与对策,其中最重要
价值工程活动中,用来确定产品功能评价值的方法有( )。A、环比评分法 B、替
最新回复
(
0
)