首页
登录
学历类
【解】(1)由AB+B=O得(E+A)B=O,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重,
【解】(1)由AB+B=O得(E+A)B=O,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重,
练习题库
2022-08-02
56
问题
选项
答案
解析
【解】(1)由AB+B=O得(E+A)B=O,从而r(E+A)+r(B)≤3,因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重,显然λ=-1不可能为三重特征值,则A的特征值为λ1=λ2=-1,λ3=5.由(E+A)B=O得B的列组为(E+A)X=O的解,
转载请注明原文地址:http://tihaiku.com/xueli/2695822.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
设矩阵仅有两个不同的特征值,若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使
A为三阶实对称矩阵,A的秩为2且 (Ⅰ)求A的所有特征值与特征向量; (
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足A
设A是3阶实对称矩阵,满足,并且r(A)=2.(1)求A的特征值.(2)当
已知二次型,(1)求出二次型f的矩阵A的特征值;(2)写出二次型f的标准形
设二次型.(Ⅰ)求二次型的矩阵的所有特征值;(Ⅱ)若二次型的规范形为,求的值
二次型,(1)求f(x1,x2,x3)的矩阵的特征值.(2)设f(x1,x2
设A为三阶方阵,为三维线性无关列向量组,且有求(I)求A的全部特征值(II)A
设2是方阵A的特征值,则必有特征值A.0 B.1 C.-1 D.以
设为n阶方阵A的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,证明X
随机试题
Criticsofearlyschoolingciteresearchthatquestionswhether4-year-oldc
Jack______fromhomefortwodaysnow,andIambeginningtoworryabouthissa
Collegecostsvaryquiteabit,dependinguponthetypeofschoolattended.
Forthispart,youareallowed30minutestowriteashortessayentitledMyVie
临床用于各种原因引起的剧烈干咳和刺激性咳嗽,尤适用于伴有胸痛的剧烈干咳的是:A.
法国画家塞尚在西方被尊奉为()A.后印象派之父 B.现代绘画之父 C.印
根据上述资料,以下说法正确的是:A.2021年1—4月份,规模以上工业原油日
简述现代企业人力资源管理各个历史发展阶段的特点。
具有特殊性,只能从有限范围的供应商处采购的货物或者服务,可以依照《政府采购法》采
没有下影线的阴线表明收盘价正好与最低价相等。()
最新回复
(
0
)