首页
登录
学历类
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )。A. 矩阵C的行向量
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )。A. 矩阵C的行向量
考试题库
2022-08-02
46
问题
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )。A. 矩阵C的行向量组与矩阵A的行向量组等价 B. 矩阵C的列向量组与矩阵A的列向量组等价 C. 矩阵C的行向量组与矩阵B的行向量组等价 D. 矩阵C的列向量组与矩阵B的列向量组等价
选项
A. 矩阵C的行向量组与矩阵A的行向量组等价
B. 矩阵C的列向量组与矩阵A的列向量组等价
C. 矩阵C的行向量组与矩阵B的行向量组等价
D. 矩阵C的列向量组与矩阵B的列向量组等价
答案
B
解析
A(β1,β2,…,βn)=(γ1,γ2,…,γn),Aβi=γi(1≤i≤n),即C的列向量组可由A的列向量组线性表示。∵B可逆,∴A=CB-1,A的列向量组可由C的列向量组线性表示。矩阵C的列向量组与矩阵A的列向量组能相互线性表示,所以矩阵C的列向量组与矩阵A的列向量组等价。
转载请注明原文地址:http://tihaiku.com/xueli/2695002.html
本试题收录于:
数学二研究生题库研究生入学分类
数学二研究生
研究生入学
相关试题推荐
BA选项成立,则两个矩阵的秩相等,不能推出特征值相同,C选项是充分而非必要条件。C成立,可推出A的特征值为1,-1,0,但是A的特征值为1,-1,0时候,Q不一
已知矩阵 ,若下三角可逆矩阵P和上三角可逆矩阵Q可使得PAQ为对角矩阵,则P,
设A=(α1,α2,α3,α4)为四阶正交矩阵,若矩阵 ,k表示任意常数,
已知矩阵 若线性方程组Ax=b有无穷多解,则a=
设A为3阶矩阵,a1,a2为A的属于特征值1的线性无关的特征向量,a3为A的属于
设A是4阶矩阵,A*为A的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量
设 E为三阶单位矩阵。 (Ⅰ)求方程组AX=0的一个基础解系; (Ⅱ)
设矩阵 α1、α2、α3为线性无关的3维列向量组,则向量组Aα1、Aα2、
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,
设A、B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( )。
随机试题
Whatthecorporationneedsdesperatelyisahuge______ofcashandbettertrain
AsanimmigranttoNorthAmerican,youwillneedtoensurethatemployersand
WhichofthefollowingwordisNOTaloanwordinEnglish?A、Ballet,,B、Biology.C
1岁婴儿,发热6天,体温39℃左右。伴咳嗽。发病第2天起用青霉素治疗2天,仍发热
《变电评价管理规定》:精益化评价中发现的停电试验项目超周期设备,且最近一次年度评
段某,男,36岁,由于严重车祸,至今在家养伤,心情郁结,担心有残疾的可能,不愿与
由于具有较高的概括水平的上位经验与具有较低的概括水平的下位经验之间的相互影响而发
甲公司被法院宣告破产,清算组在清理该公司财产时,发现的下列哪些财产应列入该公司的
反思性教学
关于装配式轻型木结构体系的优点,说法正确的是()。A.施工简便 B.
最新回复
(
0
)