首页
登录
职称英语
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
游客
2025-02-07
36
管理
问题
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS
1 Until the nineteenth century, most tall buildings were constructed of load-bearing masonry walls. Masonry walls had to be thick, particularly at the base, to support a building’s great weight. Stoneworkers built these walls by placing stone upon stone or brick upon brick, adding strength and stability by placing layers of mortar or cement between the stones. Floors and roofs had to be supported by wooden beams, but the major vertical
force
of buildings was supported by thick masonry walls. This imposed serious limitations on the number and size of windows.
2 In the 1850s, an alternative was emerging that would eliminate the need for exterior weight-bearing walls: a three-dimensional grid of metal beams and columns. The introduction of metal construction made it possible to build larger interior spaces with fewer columns than before. The new construction was capable of supporting all the loads to which a building might be subjected, including the vertical forces caused by the weight of the floors and the horizontal forces caused by the wind or earthquakes.
3 The first buildings to depart from the load-bearing wall tradition were iron-framed. Wrought iron, shaped by hammering the heated metal or roiling it under extreme pressure, contains almost no carbon, and when used as floor beams, it can support a great deal of weight. An interior wrought iron skeleton supported all of the hnilding’s weight. Exterior walls of reinforced concrete acted mainly as weatherproofing.
As masonry yielded to concrete, walls that once bore weight evolved into thin curtain walls that would allow more windows.
These modifications produced sturdier, lighter, and taller buildings that quickly became known as skyscrapers. Skyscrapers satisfied the growing need for office space, warehouses, and department stores. Buildings of eight or more stories quickly transformed the city skyline and dominated the central business districts of American cities such as New York, Chicago, and St. Louis.
4 Skyscrapers differed from previous tall structures with their use of technical innovations such as cast iron and the elevator. The development of cast iron technology, in which molten iron is poured into a mold, made modern plumbing possible. Cast iron pipes, fittings, and valves could deliver pressurized water to the many floors of tall buildings and drain wastewater out. The invention of the mechanical elevator made it possible to construct even taller buildings. Before the elevator, office buildings were rarely more than four or five stories high. In 1857, the first passenger elevator equipped with safety brakes prevented the elevator from falling to the basement when a cable broke. The elevator made the upper floors as
rentable
as the first floor, liberating architecture from dependence on stairways and human muscle.
5 Not only did these innovations have important uses in the engineering of tall buildings, but
they
also erased the traditional architectural distinctions separating the bottom, middle, and top of a building. Architects designed towers that reached to the heavens in a continuous vertical grid. Iron construction established the principle of repetitive rhythms as a natural expression of construction, as well as the idea that buildings could be made of new materials on a vast scale.
6 Construction techniques were
refined
and extended over the next several decades to produce what architectural historians have called "true skyscrapers," buildings over twenty stories high. The invention of steel was particularly significanti as steel T-beams and I-beams replaced iron in these new structures. Steel weighs less than half as much as masonry and exceeds both masonry and iron in tension and compression strength as well as resistance to fatigue. Steel rivets replaced iron bolts and were in turn replaced by electric arc welding in the 1920s. The skyscraper’s steel skeleton could meet all of the structural requirements while occupying very little interior space. Exterior curtain walls could be quite thin, since their only function now was to let in light and keep the weather out. [br] All of the following are given as benefits of iron-frame construction EXCEPT
选项
A、sturdy walls made of stone or brick
B、large interior spaces with few columns
C、a skeleton that supported heavy loads
D、exterior walls with many windows
答案
A
解析
The passage does not state that sturdy walls made of stone or brick were a benefit of iron-frame construction; in fact, such walls characterized masonry construction. All of the other answers are given: The introduction of metal construction made it possible to build larger interior spaces with fewer columns than before; An interior wrought iron skeleton supported all of the building’s weight; ... walls that once bore weight evolved into thin curtain walls that would allow more windows. (1.2)
转载请注明原文地址:https://tihaiku.com/zcyy/3947149.html
相关试题推荐
GlobalDevelopmentsSociologiststellusthereisalink
GlobalDevelopmentsSociologiststellusthereisalink
GlobalDevelopmentsSociologiststellusthereisalink
GlobalDevelopmentsSociologiststellusthereisalink
GlobalDevelopmentsSociologiststellusthereisalink
GlobalDevelopmentsSociologiststellusthereisalink
DEVELOPMENTSINTHECONSTRUCTIONOFTALLBUILDINGS1Untiltheninetee
DEVELOPMENTSINTHECONSTRUCTIONOFTALLBUILDINGS1Untiltheninetee
DEVELOPMENTSINTHECONSTRUCTIONOFTALLBUILDINGS1Untiltheninetee
DEVELOPMENTSINTHECONSTRUCTIONOFTALLBUILDINGS1Untiltheninetee
随机试题
[originaltext]Asmoreandmorepeoplelosetheirjobs,nowit’sperhapsthe
[audioFiles]audio_ehbz20086_002(20086)[/audioFiles]A、Onfoot.B、Bybus.C、Byca
下列关于客观估计时间to、最可能估计时间tm和悲观估计时间to之间的关系说的错误
在Excel中,要使活动单元格立即跳转到A1单元格,可以通过()键实现。A.C
A.0.75mA B.0 C.1mA D.3mA
某隧道一段区域内最低亮度为52cd/m2,该区域平均亮度为60cd/m2;隧道路
男性,50岁,间断性腹不适4年,胃镜检查示,重度萎缩性胃炎伴肠化W-S染色阳性。
下列关情景分析法,说法正确的有( ) Ⅰ.情景分析法也叫做脚本法或前景描述法
最易触及心包摩擦感的是A:坐位,胸骨左缘第4肋间处,深呼气末 B:坐位,胸骨左
正向市场进行熊市套利时,当较近月份合约价格已经相当低时,以至于不可能进一步偏离较
最新回复
(
0
)