首页
登录
职称英语
Passaae Four When most animals die, nature likes to tidy up by making th
Passaae Four When most animals die, nature likes to tidy up by making th
游客
2024-11-03
15
管理
问题
Passaae Four
When most animals die, nature likes to tidy up by making their bodies disappear. The remains get eaten by scavengers, bones are scattered, tissues rot away and anything left over tends to get destroyed by the elements. Very occasionally, though, these destructive processes get disrupted. This usually happens when the corpse is quickly buried by sediment deposited by a river or blown in by the wind. Then begins a slow process in which minerals precipitate from groundwater into the encased organic material, eventually replacing it with a stony replica: a fossil.
Such was palaeontological doctrine for decades. But in recent years traces of soft tissue, such as blood vessels and bone cells, have been found in some dinosaur fossils. Now researchers have come up with an explanation for how these tissues were preserved for millions of years, which just might make it possible to extract some elements of prehistoric DNA.
That there was more in a fossil than meets the eye emerged in 2005 when Mary Schweitzer, a palaeobiologist at North Carolina State University, found something unusual after her team used acid to dissolve minerals from a fossilised piece of Tyrannosaurus rex bone. Left behind were some fibrous tissue, transparent blood vessels and cells. Many argued that this material must have come from modern bacteria and not a T. rex, since nothing organic could possibly survive the 68m years since the creature had walked the Earth.
In 2012, however, Dr. Schweitzer and her colleagues revealed the presence of proteins in a dinosaur fossil freshly dug up and carefully protected from any potential contamination. Moreover, one of the proteins the researchers identified could be found only in birds. Since dinosaurs were the ancestors of modern birds, the discovery made it hard to argue that soft-tissue material in the fossil could have come from bacterial contamination. Still, many scientists wondered how such a thing was possible.
In Proceedings of the Royal Society, Dr. Schweitzer and her colleagues collaborated with a team led by Mark Goodwin, a palaeontologist at the University of California, to seek an explanation. Organic material from dinosaur bones was studied using micro x-ray absorption spectroscopy, which allows scientists to examine the structure of matter using intense light beams. This led Dr. Goodwin to notice something remarkable: the organic material in the samples was thickly laced with iron nanoparticles. In animals, iron is most commonly found in blood and this led the researchers to wonder if the iron had come from blood cells that had once flowed through their dinosaur’s veins. Could it have played a part in the preservation of the tissues?
To test this idea, the researchers designed an experiment using freshly slaughtered ostriches which, being large and flightless birds, seemed to be a reasonable modern equivalent to dinosaurs. They extracted blood vessels from the bones of the birds and soaked them in a haemoglobin solution obtained from ruptured (破裂的) ostrich blood cells for 24 hours. The samples were then placed in both a saline solution and sterile distilled water. As a control, some of the blood vessels were put straight into saline solution or water without being pre-soaked in blood.
As expected, the ostrich tissues that went directly into the water and the saline solution fell apart rapidly and were entirely consumed by bacteria or heavily degraded in just three days. The same thing happened to the tissue soaked in haemoglobin and placed in water. But the treated sample in the saline solution remained intact and has stayed that way for two years now, with no signs of bacterial growth.
Dr. Schweitzer and Dr. Goodwin believe that highly reactive ions known as free radicals, which are produced by iron as it is released from the haemoglobin, interact with the organic tissue causing abnormal chemical bonds to form. These bonds effectively tie proteins in knots at the molecular level, much as the preservative formaldehyde does. This knot-tying makes the proteins unrecognizable to the sorts of bacteria that would normally consume them. This, they theorise, is how the soft tissues manage to survive for millions of years without rotting away.
The iron nanoparticles, however, may be doing more than just preserving tissues. Despite what happens in the science fiction world of "Jurassic Park" , no dinosaur DNA has yet been found. The reason for this is that DNA is thought to have a half-life of 521 years, which means that, after that much time, half of the bonds between the proteins that make up DNA have broken apart; after another 521 years, another half have gone, and so on. This leaves very little behind after hundreds of thousands of years yet alone the 65m years or so that stand between humanity and dinosaurs. Even so, Dr. Schweitzer and Dr. Goodwin still wondered if the iron-based preservation process might allow DNA to bypass its typical half-life and last a lot longer.
To find that out, the team used an iron-removal compound known as pyridoxal isonicotinic hydrazide and added four different stains that react only with either DNA itself, or with proteins closely associated with it in organisms other than microbes (微生物). Remarkably, in all cases, these specific stains lit up inside the ancient cells in the tissue samples. This hints that something chemically very similar to DNA can remain in a fossil and might yet be hidden precisely where it had resided during life. [br] We can infer from the last two paragraphs that________.
选项
A、dinosaurs’ DNA was not replicated in the fiction world of "Jurassic Park"
B、DNA disappears in about 1,000 years and can’t be found in fossils
C、iron nanoparticles can help the DNA to last longer than 521 years
D、iron might play a critical role in keeping DNA in the animal fossils
答案
D
解析
转载请注明原文地址:https://tihaiku.com/zcyy/3829604.html
相关试题推荐
PassaaeFourWhenmostanimalsdie,naturelikestotidyupbymakingth
PassaaeFourWhenmostanimalsdie,naturelikestotidyupbymakingth
PassaaeOneCaneatingacheeseburgerbeconsideredanactofwar?Yes,
PassaaeOneCaneatingacheeseburgerbeconsideredanactofwar?Yes,
PassageFour[br]What’sthebesttitleforthepassage?Nature,NurtureandE
PassaaeOneWhatdoesthedialoguebetweentheauthorandthecityofficial
PassaaeFour(1)Ournexttaskistoconsiderthepoliciesandprincipl
PassaaeFour(1)Ournexttaskistoconsiderthepoliciesandprincipl
Manyofthemostflexibleexamplesoftooluseinanimalscomefromprimates
Manyofthemostflexibleexamplesoftooluseinanimalscomefromprimates
随机试题
TheAlzheimer’sAssociationandtheNationalAllianceforCaregivingestimate
[originaltext]M:FluseasonisnoteasingitsgriponmuchoftheUnitedSt
Peoplewhohaveexperiencedidentitytheftspendmonthstryingtorepairwha
在估计总体比例时样本量的确定中,由于总体比例的值是固定的,因而估计误差主要由样本
患者男,24岁,1周前"感冒",2天前出现双下肢无力,伴尿潴留,并逐渐加重。查体
属逆治法的是A.用热远热 B.用凉远凉 C.塞因塞用 D.热因热用 E.
私募股权投资基金的组织形式不包活( )A.合伙型基金 B.混合型基金 C.
小温投保了一份人身保险,保险合同规定小温须在20年内缴清保费,无论小温在何时死亡
某企业2011年的营业收入为80万元,营业成本为55万元,销售费用为2万元,管理
休克治疗过程中,最重要的观察指标是A.血压 B.呼吸 C.尿量 D.神志
最新回复
(
0
)