首页
登录
职称英语
The Science that Imitates Nature’s Mechanisms A Eur
The Science that Imitates Nature’s Mechanisms A Eur
游客
2024-06-04
34
管理
问题
The Science that Imitates Nature’s Mechanisms
A European industrialist not long ago became very suspicious about American purposes and intentions in certain areas of scientific research. He learned by chance that the United States was signing contracts with scientists in England, France, Italy, Germany, Belgium, Sweden, Uruguay, Chile, Argentina, Australia, and other countries, calling for research into such matters as the function of the frog’s eye and the learning ability of the octopus.
It seemed to the industrialist that such studies could not possibly have any practical value. He seriously believed that the United States was employing the foreign scientists to do meaningless work and occupy their time, while American scientists were busy in the really important areas of science. He was unaware of the fact that the United States was spending much more money at home than abroad for similar studies.
Nature does things better than people
Actually, the research he questioned involves a field of science so new that most people have never heard of it. Named bionics in 1960, this science is the study of living creatures, a study in search of principle applicable to engineering. Nature has operated a vast laboratory for two billion years, and bionics probes the secrets of the marvelous "special-purpose" mechanisms that have developed.
Take the frog’s eye for example. A frog eats only live insects, and its eye instantly spots a moving fly within reach of its tongue. You can surround a frog with dead (therefore motionless) flies, and it will never know they are there.
If we can completely understand the mechanic of the frog’s eye, we can develop a "map reading eye" for missiles and a "pattern--recognition eye" for our basic air defense system called SAGE (semi-automatic ground environment). SAGE is badly overworked. Its international network of radar "EYES" supplies a tremendous mass of unimportant details about meteorites, clouds, flights of ducks, geese, and friendly planes, and it sometimes gets confused. Until we can build a mechanical frog’s eye into SAGE, it will remain somewhat inefficient.
Military and civilian uses
The frog’s eye holds promise in civilian life, too. For example, at most major airports the airtraffic problem--with 20 million flights per year to handle--has reached a critical stage. We must develop better devices for monitoring and controlling air traffic.
Special-purpose mechanism as exciting as the frog’s eye can be found throughout nature. The bat is under study because the bat’s sonar is much more efficient than man-made sonar. By bouncing supersonic squeaks off objects around him, the bat flies about with remarkable skills. A bat can fly through a dark room strung with dozens of piano wires and never touch a single wire.
The mosquito is under study because we need to solve the problem of Static that lessens the efficiency of our communications systems. A mosquito, simply by vibrating its wings, can set up a hum that will cut through any interfering noise (man or nature can create loud whistles or thunder, for instance) and give a message to another mosquito 150 feet away.
Electrical system
Theoretically at least we should be able to copy these mechanisms found in nature, for all biological organisms-from mosquito to frog to man--are in part actually electrical systems. The sense organs that "connect" all animals to the outside world are merely transducers--instruments like a microphone, TV camera, or phonograph pickup arm--which convert one form of energy into another. A microphone, for example, converts sound into electrical signals which are carried to a loudspeaker and converted back into sound waves. Similarly, the nerve cells of a man’s ear convert a cry for help into electrical pulses which are sped over his nervous system to the brain. The brain receives the signal, and then sends an answering electrical-pulse message to his legs, where it is convened into muscular energy when he starts running toward the cry.
We have been slow to profit from this close analogy between a biological organism and an electronic system. It was only in the early 1950’s that we consciously began to unite biologists with physicists, chemists, electronic experts, mathematicians, and engineers in a team to solve the mysteries of biological machinery. The first formal bionics meeting--called by the U. S. Ak Force--was held in 1960. A year later there were 20,000 biologists at work in research laboratories in the United States more than double the number employed ten years earlier.
Electronic and nonelectronic
A bionicist can, of course, copy much in nature without resorting to electronics. For example, an airplane wing that gives unique stability to a small plane was introduced by the Cessna Company in 1960; the wing tips of a seabird served as the model. An artificial gill to extract oxygen from water and throw off carbon dioxide like a fish’s gill is being studied by the Navy for use on submarines. For the Navy, too, the U. S. Rubber Company is making tests of a rubber "skin" for boats and submarine hulls, modeled on the elastic skin of a dolphin.
But the greatest advances in bionics unquestionably will be electronic in nature. Already an instrument laboratory has developed an "eye" that can peer through a microscope and distinguish certain kinds of diseased ceils from healthy cells. General Electric Company has an experimental eye, the Visilog, that operates on the principle used by the human eye in judging distance as a solid surface is approached.
We humans judge out rate of approach by the changed occurring in the texture of a surface as our eyes get closer and closer to it. This explains why we sometimes fail to see a glass door, but we always stop short of a brick wall. General Electric’s eye calculates the rate of approach to any textured surface and contains a device to slow the approach speed. It is being developed, hopefully, to pemit a planned moon-probe rocket to make a soft landing on the moon’s surface. A small variety of Visilog may be created for the blind.
Ears, nose, and brain
The owl’s ears are fascinating to many bionicists, for the owl has uncanny directional hearing. He can hear a mouse chewing and fly down on it, even though it is hidden from sight under a pile of leaves. For those engaged in designing sensitive mechanic ears for listening to enemy sonar, owl research may indeed have value.
Nor is the nose being ignored. Many male creatures find their way to their mates by following an odor given off by the female. To explore mechanical scent detection, the Armor research Foundation has developed a synthetic nose which can, it is believed, detect scents in vapors at a ratio of one particle to a million. The Foundation thinks that it can be used in early detection of food spoilage, and to warn industrial and military personnel of the presence of poisonous vapors.
Finally, the bionicist is extremely interested in the one general mechanism that serves the entire animal kingdom--the brain. The brain makes all animals unimaginably efficient, like small-size computers. "Actually, though," says Dr. Warren S. Moculloch, one of our great computer-scientists, "computers are nothing more than stupid beasts, they haven’t the brains of
an ant. And they can’t do the job that must be done."
Hopefully, bionicist is extremely interested in the one general mechanism that mimics the brain. But as long as the tiny brain of a pigeon continuous to baffle science, there seems little likelihood of understanding the secrets of the human brain during this century. Yet, even if the bionicist never attains this goal, he will make many discoveries that once seemed impossible to us. Even in our lifetime he may be able to build machines that will be intelligent enough. [br] _____ is a general mechanism that serves the entire animal kingdom.
选项
答案
The brain
解析
文章第十六段中提到大脑是作用于所有动物的总体结构。
转载请注明原文地址:https://tihaiku.com/zcyy/3618716.html
相关试题推荐
Thewordscienceisheardsoofteninmodemtimesthatalmosteverybodyhas
____________(我们决不可以背离)one’sbetternature.Innocaseshouldweeverbetray决不,表
[originaltext]Inabidtoimprovetheknowledgeoffarmersinscienceandt
ManypeopleseemtothinkthatsciencefictionistypifiedbytheBug-eyedM
ManypeopleseemtothinkthatsciencefictionistypifiedbytheBug-eyedM
[originaltext]WhentheWestinghouseScienceTalentSearchTeamnameditsto
[originaltext]WhentheWestinghouseScienceTalentSearchTeamnameditsto
[originaltext]WhentheWestinghouseScienceTalentSearchTeamnameditsto
[originaltext]HenrySmithtaughtscienceattheCitySchool.Oncehewentt
[originaltext]HenrySmithtaughtscienceattheCitySchool.Oncehewentt
随机试题
[originaltext]Mostpeoplepicturesharksashuge,powerful,frighteningpre
疾病控制机构在接到丙类传染病爆发、流行疫情报告后,派专业人员赶赴现场进行调查的时
新风由采风口接至走廊内新风干管的正确路径应为:() A.采风口-新风管-新
A.个人史 B.主诉 C.既往史 D.家族史 E.现病史患者的药物过敏史
痉挛型脑瘫的临床表现正确的是A.肌张力减低 B.两腿交叉或剪刀样 C.舞蹈样
强油循环风冷变压器,在运行中,当冷却系统发生故障切除全部冷却器时,变压器在额定负
研究人员指出,在禁用含铅油漆和汽油数十年后,美国一些城市土壤的含铅量仍然超标,这
(2015年真题)对领导干部干预司法活动、插手具体案件处理的行为作出禁止性规定,
办理进出口货物的海关申报手续,报关人可自行选择采用纸质报关单或电子数据报关单的形
下列关于项目建议书(初步可行性研究)与可行性研究的说法,错误的是()。A.
最新回复
(
0
)