首页
登录
职称英语
"Weather and Chaotic Systems" Scientists today have a ve
"Weather and Chaotic Systems" Scientists today have a ve
游客
2024-01-04
58
管理
问题
"Weather and Chaotic Systems"
Scientists today have a very good understanding of the physical laws and mathematical equations that govern the behavior and motion of atoms in the air, oceans, and land. Why, then, do we have so much trouble predicting the weather? For a long time, most scientists
assumed
that the difficulty of weather prediction would go away once we had enough weather stations to collect data from around the world and sufficiently powerful computers to deal with all the data. However, we now know that weather is
fundamentally
unpredictable on time scales longer than a few weeks. To understand why, we must look at the nature of scientific prediction.
→ Suppose you want to predict the location of a car on a road 1 minute from now. You need two basic pieces of information: where the car is now, and how fast it is moving. If the car is now passing Smith Road and heading north at 1 mile per minute, it will be 1 mile north of Smith Road in 1 minute.
Now, suppose you want to predict the weather. Again, you need two basic types of information: (1) the current weather and (2) how weather changes from one moment to the next. You could attempt to predict the weather by creating a "model world." For example, you could overlay a globe of the Earth with graph paper and then specify the current temperature, pressure, cloud cover, and wind within each square. These are your starting points, or initial conditions. Next, you could input all the initial conditions into a computer, along with a set of equations (physical laws) that describe the processes that can change weather from one moment to the next.
→ Suppose the initial conditions represent the weather around the Earth at this very moment and you run your computer model to predict the weather for the next month in New York City. The model might tell you that tomorrow will be warm and sunny, with cooling during the next week and a major storm passing through a month from now. Now suppose you run the model again but make one minor change in the initial conditions—say, a small change in the wind speed somewhere over Brazil.A For tomorrow’s weather, this slightly different initial condition will not change the weather prediction for New York City.B But for next month’s weather, the two predictions may not agree at all! C
The disagreement between the two predictions arises because the laws governing weather can cause very tiny changes in initial conditions to be greatly magnified over time.D This extreme sensitivity to initial conditions is sometimes called the butterfly effect: If initial conditions change by as much as the flap of a butterfly’s wings, the resulting prediction may be very different.
→ The butterfly effect is a hallmark of chaotic systems. Simple systems are described by linear equations
in which
, for example, increasing a cause produces a proportional increase in an effect. In contrast, chaotic systems are described by nonlinear equations, which allow for subtler and more intricate interactions. For example, the economy is nonlinear because a rise in interest rates does not automatically produce a corresponding change in consumer spending. Weather is nonlinear because a change in the wind speed in one location does not automatically produce a corresponding change in another location. Many (but not all) nonlinear systems exhibit chaotic behavior.
→ Despite their name, chaotic systems are not completely random. In fact, many chaotic systems have a kind of underlying order that explains the general
features
of their behavior even while details at any particular moment remain unpredictable. In a sense, many chaotic systems are "predictably unpredictable." Our understanding of chaotic systems is increasing at a tremendous rate, but much remains to be learned about them. [br] Look at the four squares [■] that show where the following sentence could be inserted in the passage. For next week’s weather, the new model may yield a slightly different prediction. Where could the sentence best be added? Click on a square [■] to insert the sentence in the passage.
选项
A、Square A.
B、Square B.
C、Square C.
D、Square D.
答案
B
解析
Chronological order is a transitional device that connects the insert sentence in sequence within the text. "... tomorrow" should precede "next week" and "next month" should follow "next week."
转载请注明原文地址:https://tihaiku.com/zcyy/3333631.html
相关试题推荐
FIELDTRIPPLAN;WEATHER:everyoneneedswarmclothinganda【L6】________ACTIVI
FIELDTRIPPLAN;WEATHER:everyoneneedswarmclothinganda【L6】________ACTIVI
FIELDTRIPPLAN;WEATHER:everyoneneedswarmclothinganda【L6】________ACTIVI
FIELDTRIPPLAN;WEATHER:everyoneneedswarmclothinganda【L6】________ACTIVI
FIELDTRIPPLAN;WEATHER:everyoneneedswarmclothinganda【L6】________ACTIVI
HistoryofweatherforecastingEarlymethodsAlmanacsconnectedthewe
HistoryofweatherforecastingEarlymethodsAlmanacsconnectedthewe
HistoryofweatherforecastingEarlymethodsAlmanacsconnectedthewe
HistoryofweatherforecastingEarlymethodsAlmanacsconnectedthewe
[audioFiles]audio_etoefz_025(20051)[/audioFiles]A、Callforthelatestweatherr
随机试题
[img]2019m5x/ct_eyyjscz2018j_eyyjsccloze_0048_201904[/img]Scientistsarepa
Pleaseacceptthisgift______(作为我们感谢你的帮助的一点心意).intokenofourthanksforyour
对部分品学兼优或某一方面有特殊才能的学生实行免试录取的招生制度是指()A.保送
同使用计算机审计相比,绕过计算机审计的一大主要劣势在于()。A.通过模拟程序
中华民族历经苦难而又生生不息。从汶J11到玉树、再到芦山,那生命至上的国家理念,
A.热压灭菌 B.紫外线灭菌 C.火焰灭菌 D.流通蒸汽灭菌 E.干热空
数学张老师常大声呵斥学生,导致学生患上抑郁症,造成恶劣影响。对于张老师的这种行为
某跨国公司在某一纳税年度,来自本国所得100万元;该公司在甲、乙两国各设一分
某企业将其生产的沐浴液和香皂分别冠以不同的品牌,该企业采用的品牌战略属于( )
(2020年真题)关于桥梁支座的说法错误的是( ) A.支座传递上部结构承受
最新回复
(
0
)