首页
登录
职称英语
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
游客
2024-01-04
32
管理
问题
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS
1 Until the nineteenth century, most tall buildings were constructed of load-bearing masonry walls. Masonry walls had to be thick, particularly at the base, to support a building’s great weight. Stoneworkers built these walls by placing stone upon stone or brick upon brick, adding strength and stability by placing layers of mortar or cement between the stones. Floors and roofs had to be supported by wooden beams, but the major vertical
force
of buildings was supported by thick masonry walls. This imposed serious limitations on the number and size of windows.
2 In the 1850s, an alternative was emerging that would eliminate the need for exterior weight-bearing walls: a three-dimensional grid of metal beams and columns. The introduction of metal construction made it possible to build larger interior spaces with fewer columns than before. The new construction was capable of supporting all the loads to which a building might be subjected, including the vertical forces caused by the weight of the floors and the horizontal forces caused by the wind or earthquakes.
3 The first buildings to depart from the load-bearing wall tradition were iron-framed. Wrought iron, shaped by hammering the heated metal or roiling it under extreme pressure, contains almost no carbon, and when used as floor beams, it can support a great deal of weight. An interior wrought iron skeleton supported all of the hnilding’s weight. Exterior walls of reinforced concrete acted mainly as weatherproofing.
As masonry yielded to concrete, walls that once bore weight evolved into thin curtain walls that would allow more windows.
These modifications produced sturdier, lighter, and taller buildings that quickly became known as skyscrapers. Skyscrapers satisfied the growing need for office space, warehouses, and department stores. Buildings of eight or more stories quickly transformed the city skyline and dominated the central business districts of American cities such as New York, Chicago, and St. Louis.
4 Skyscrapers differed from previous tall structures with their use of technical innovations such as cast iron and the elevator. The development of cast iron technology, in which molten iron is poured into a mold, made modern plumbing possible. Cast iron pipes, fittings, and valves could deliver pressurized water to the many floors of tall buildings and drain wastewater out. The invention of the mechanical elevator made it possible to construct even taller buildings. Before the elevator, office buildings were rarely more than four or five stories high. In 1857, the first passenger elevator equipped with safety brakes prevented the elevator from falling to the basement when a cable broke. The elevator made the upper floors as
rentable
as the first floor, liberating architecture from dependence on stairways and human muscle.
5 Not only did these innovations have important uses in the engineering of tall buildings, but
they
also erased the traditional architectural distinctions separating the bottom, middle, and top of a building. Architects designed towers that reached to the heavens in a continuous vertical grid. Iron construction established the principle of repetitive rhythms as a natural expression of construction, as well as the idea that buildings could be made of new materials on a vast scale.
6 Construction techniques were
refined
and extended over the next several decades to produce what architectural historians have called "true skyscrapers," buildings over twenty stories high. The invention of steel was particularly significanti as steel T-beams and I-beams replaced iron in these new structures. Steel weighs less than half as much as masonry and exceeds both masonry and iron in tension and compression strength as well as resistance to fatigue. Steel rivets replaced iron bolts and were in turn replaced by electric arc welding in the 1920s. The skyscraper’s steel skeleton could meet all of the structural requirements while occupying very little interior space. Exterior curtain walls could be quite thin, since their only function now was to let in light and keep the weather out. [br] The word rentable in paragraph 4 is closest in meaning to
选项
A、strong
B、beautiful
C、large
D、desirable
答案
D
解析
Rentable means desirable in this context. Clues: The elevator made the upper floors as rentable as the first floor The elevator meant that people no longer had to climb numerous stairways to the upper floors. Thus, people desired (wanted) to rent the upper floors as much as the first floor. (1.4)
转载请注明原文地址:https://tihaiku.com/zcyy/3332593.html
相关试题推荐
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
Notuntilthelatenineteenthandearlytwentiethcenturies______asaunifiedsc
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
随机试题
Intheearly1950stheresearcherswhoproducedthefirstcladglassoptical
WhyhascrimeintheU.S.declinedsodramaticallysincethe1990s?Econ
AjuryhasfoundformerFrenchofficialMauriceMapontguiltyofcrimesagainst
A.inappropriateB.attendC.slipsD.trackE.financeF.unchangeableG.organ
下列哪项人体内对体液丢失代偿能力最强的年龄段A.新生儿 B.婴幼儿 C.儿童
单纯性肾病综合征患儿,应用糖皮质激素治疗。对他的出院指导中哪项错误A:不能随意停
根据性质及由此决定的供给和消费方式的不同,经济物品大体上可分为两大类:私人产品和
MMPI是采用()编制的客观化测验单选A.因素分析法 B.总加评定法
项目监理机构编制的施工进度控制工作细则应包括的内容有( )。A.施工进度控制目标
劳动争议仲裁委员会由劳动行政部门代表、同级工会代表、用人单位方面的代表组成。劳动
最新回复
(
0
)